151
Views
18
CrossRef citations to date
0
Altmetric
Articles

A green-nanocomposite film based on poly(vinyl alcohol)/ Eleusine coracana: structural, thermal, and morphological properties

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 257-265 | Received 12 Dec 2018, Accepted 04 Jan 2019, Published online: 12 Feb 2019

References

  • Wu, Y., X. Luo, W. Li, R. Song, J. Li, Y. Li, B. Li, and S. Liu. 2016. Green and biodegradable composite films with novel antimicrobial performance based on cellulose. Food Chem. 197:250–256.
  • Sadanand, V., N. Rajini, A. V. Rajulu, and B. Satyanarayana. 2016. Preparation of cellulose composites with in situ generated copper nanoparticles using leaf extract and their properties. Carbohydr. Polym. 150:32–39.
  • Xia, C., S. Zhang, S. Q. Shi, L. Cai, A. C. Garcia, H. R. Rizvi, and N. A. D'Souza. 2016. Property enhancement of soy protein isolate-based films by introducing POSS. Int. J. Biol. Macromol. 82:168–173.
  • Sorrentino, A., G. Gorrasi, and V. Vittoria. 2007. Potential perspectives of bionanocomposites for food packaging applications. Trends Food Sci. Technol. 18:84–95.
  • Asad, M., N. Saba, A. M. Asiri, M. Jawaid, E. Indarti, and W. D. Wanrosli. 2018. Preparation and characterization of nanocomposite films from oil palm pulp nanocellulose/poly(vinyl alcohol) by casting method. Carbohydr. Polym. 191:103–111.
  • Su, J. F., Z. Huang, X. Y. Yuan, X. Y. Wang, and M. Li. 2010. Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by maillard reactions. Carbohydr. Polym. 79:145–153.
  • Sreeja, S., S. Sreedhanya, N. Smijesh, R. Philip, and C. I. Muneera. 2013. Organic dye impregnated poly (vinyl alcohol) nanocomposite as an efficient optical limiter: structure, morphology and photophysical properties. J. Mater. Chem. C. 1:3851–3861.
  • Kao, W. C., J. Y. Wu, C. C. Chang, and J. S. Chang. 2009. Cadmium biosorption by polyvinyl alcohol immobilized recombinant Escherichia coli. J. Hazard. Mater. 169:651–658.
  • Uddin, A. J., J. Araki, and Y. Gotoh. 2011. Toward “strong” green nanocomposites: polyvinyl alcohol reinforced with extremely oriented cellulose whiskers. Biomacromolecules. 12:617–624.
  • Elashmawi, I., and E. Abdelrazek. 2010. Role of CoBr2 on the structural, optical and magnetic properties of polyvinyl alcohol films. J. Appl. Polym. Sci. 115:2691–2696.
  • Bhajantri, R. F., V. Ravindrachary, A. Harisha, V. Crasta, S. P. Nayak, and B. Poojary. 2006. Microstructural studies on BaCl2 doped poly (vinyl alcohol). Polymer. 47:3591–3598.
  • Gholap, S. G., J. P. Jog, and M. V. Badiger. 2004. Synthesis and characterization of hydrophobically modified poly(vinyl alcohol) hydrogel membrane. Polymer. 45:5863–5873.
  • Chiellini, E., P. Cinelli, S. H. Imam, and L. Mao. 2001. Composite films based on biorelated agro-industrial waste and poly (vinyl alcohol). Preparation and mechanical properties characterization. Biomacromolecules. 2:1029–1037.
  • Aydin, A. A., and V. Ilberg. 2016. Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol: starch blends. Carbohydr. Polym. 136:441–448.
  • Chen, Y., X. Cao, P. R. Chang, and M. A. Huneault. 2008. Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr. Polym. 73:8–17.
  • Saravankumaar, A., A. Senthilkumar, S. S. Saravanakumar, M. R. Sanjay, and A. Khan. 2018. Impact of alkali treatment on physico-chemical, thermal, structural and tensile properties of carica papaya bark fibers. Int. J. Polym. Anal. Char. 23:529–536.
  • Balaji, A. N., and K. J. Nagarajan. 2017. Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves. Carbohydr. Polym. 174:200–208.
  • Manimaran, P., M. Prithiviraj, S. S. Saravanakumar, V. Arthanarieswaran, and P. Senthamaraikannan. 2018. Physicochemical, Tensile and thermal characterization of new natural cellulosic fibers from the stem of Sida cordifolia. J. Nat. Fibers. 15:860–869.
  • Tian, H., J. Yan, A. V. Rajulu, A. Xiang, and X. Luo. 2017. Fabrication and properties of polyvinyl alcohol/starch blend films: Effect of composition and humidity. Int. J. Biol. Macromol. 96:518–523.
  • Dharmaraj, U., P. Parameswara, R. Somashekar, and N. G. Malleshi. 2014. Effect of processing on the microstructure of finger millet by X-ray diffraction and scanning electron microscopy. J. Food Sci. Technol. 51:494–502.
  • Hyder, M. N., and P. Chen. 2009. Pervaporation dehydration of ethylene glycol with chitosan- poly (vinyl alcohol) blend membranes: effect of CS-PVA blending ratios. J. Membr. Sci. 340:171–180.
  • Carrasco-Correa, E. J., M. Beneito-Cambra, J. M. Herrero-Martínez, and G. Ramis-Ramos. 2011. Evaluation of molecular mass and tacticity of polyvinyl alcohol by non equilibrium capillary electrophoresis of equilibrium mixtures of a polymer and dye. J. Chromatogr. A. 1218:2334–2341.
  • Yahia, I. S., and Sherif M. A. S. Keshk. 2017. Preparation and characterization of PVA/Congo red polymeric composite films for a wide scale laser filters. Opt. Laser Technol. 90:197–200.
  • Saravanakumar, S. S., A. Kumaravel, T. Nagarajan, and I. Ganesh Moorthy. 2014. Investigation of physico- chemical properties of alkali-treated Prosopis juliflora fibers. Int. J. Polym. Anal. Charact. 19: 309–317.
  • Prithiviraj, M., R. Muralikannan, P. Senthamaraikannan, and S. S. Saravanakumar. 2016. Characterization of new natural cellulosic fiber from perotis indica plant. Int. J. Polym. Anal. Char. 21:669–674.
  • Senthamaraikannan, P., and M. Kathiresan. 2018. Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis.L. Carbohydr. Polym. 186:332–343.
  • Manimaran, P., P. Senthamaraikannan, M. R. Sanjay, M. K. Marichelvam, and M. Jawaid. 2018. Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydr. Polym. 18:650–658.
  • Senthamaraikannan, P., S. S. Saravanakumar, V. P. Arthanarieswaran, and P. Sugumaran. 2016. Properties of new cellulosic fibers from bark of Acacia planifrons. Int. J. Polym. Anal. Char. 21:207–213.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.