331
Views
3
CrossRef citations to date
0
Altmetric
Articles

RAFT synthesis, properties and morphologies via thermal annealing of new azo-based ABA triblock copolymers bearing rigid and soft segments

ORCID Icon &
Pages 639-658 | Received 14 Jul 2019, Accepted 24 Jul 2019, Published online: 01 Aug 2019

References

  • Lee, M., B. K. Cho, and W. C. Zin. 2001. Supramolecular structures from rod-coil block copolymers. Chem. Rev. 101:3869–3892.
  • Hamley, I. W., V. Castelletto, Z. B. Lu, C. T. Imrie, T. Itoh, and M. Al-Hussein. 2004. Interplay between smectic ordering and microphase separation in a series of side-group liquid-crystal block copolymers. Macromolecules. 37:4798–4807.
  • Ikeda, T. 2003. Photomodulation of liquid crystal orientations for photonic applications. J. Mater. Chem. 13:2037–2057.
  • Li, M. H., P. Keller, and P. A. Lbouy. 2003. Novel liquid crystalline block copolymers by ATRP and ROMP. Macromolecules. 36:2284–2292.
  • Verploegen, E., L. C. McAfee, L. Tian, D. Verploegen, and P. T. Hammond. 2007. Observation of transverse cylinder morphology in side chain liquid crystalline block copolymers. Macromolecules. 40:777–780.
  • Tomikawa, N., Z. Lu, T. Itoh, C. T. Imrie, M. A. Adachi, M. Tokita, and J. Watanabe. 2005. Orientation of microphase-segregated cylinders in liquid crystalline diblock copolymer by magnetic field. Jpn. J. Appl. Phys. 44:L711–L714.
  • Hamley, I. W., V. Castelletto, P. Parras, Z. B. Lu, C. T. Imrie, and T. Itoh. 2005. Ordering on multiple lengthscales in a series of side group liquid crystal block copolymers containing a cholesteryl-based mesogen. Soft Matter. 1:355–363.
  • Bockstaller, M. R., R. A. Mickiewicz, and E. L. Thomas. 2005. Block copolymer nanocomposites: perspectives for tailored functional materials. Adv. Mater. 17:1331–1349.
  • Yu, H., A. Shishido, T. Iyoda, and T. Ikeda. 2007. Novel wormlike nanostructures self‐assembled in a well defined liquid crystalline diblock copolymer with azobenzene moieties. Macromol. Rapid Commun. 28:927–931.
  • Schneider, A., J. J. Zanna, M. Yamada, H. Finkelmann, and R. Thomann. 2000. Competition between liquid crystalline phase symmetry and microphase morphology in a chiral smectic liquid crystalline-isotropic block copolymer. Macromolecules. 33:649–651.
  • Wei, R., Y. He, and X. Wang. 2014. Diblock copolymers composed of a liquid crystalline azo block and a poly (dimethylsiloxane) block: synthesis, morphology and photoresponsive properties. RSC. Adv. 4:58386–58396.
  • Lehmann, O., S. Förster, and J. Springer. 2000. Synthesis of new side‐group liquid crystalline block copolymers by living anionic polymerization. Macromol. Rapid Commun. 21:133–135.
  • Asaoka, S., T. Uekusa, H. Tokimori, M. Komura, T. Iyoda, T. Yamada, and H. Yoshida. 2011. Normally oriented cylindrical nanostructures in amphiphilic PEO-LC diblock copolymers films. Macromolecules. 44:7645–7658.
  • Fasolka, M. J., and A. M. Mayes. 2001. Block copolymer thin films: physics and applications. Annu. Rev. Mater. Res. 31:323–355.
  • Dinachali, S. S., W. Bai, K. H. Tu, H. K. Choi, J. Zhang, M. E. Kreider, L. C. Cheng, and C. A. Ross. 2015. Thermo-solvent annealing of polystyrene-polydimethylsiloxane block copolymer thin films. ACS Macro Lett. 4:500–504.
  • Yu, H. 2014. Recent advances in photoresponsive liquid-crystalline polymers containing azobenzene chromophores. J. Mater. Chem. C. 2:3047–3054.
  • Yu, H., T. Iyoda, and T. Ikeda. 2006. Photoinduced alignment of nanocylinders by supramolecular cooperative motions. J. Am. Chem. Soc. 128:11010–11011.
  • Chao, C. Y., X. Li, C. K. Ober, C. Osuji, and E. L. Thomas. 2004. Orientational switching of mesogens and microdomains in hydrogen‐bonded side‐chain liquid‐crystalline block copolymers using AC electric fields. Adv. Funct. Mater. 14:364–370.
  • Yu, H., T. Kobayashi, and H. Yang. 2011. Liquid‐crystalline ordering helps block copolymer self‐assembly. Adv. Mater. 23:3337–3344.
  • Yu, H., and T. Ikeda. 2011. Photocontrollable liquid‐crystalline actuators. Adv. Mater. 23:2149–2180.
  • Yu, H., J. Li, T. Ikeda, and T. Iyoda. 2006. Macroscopic parallel nanocylinder array fabrication using a simple rubbing technique. Adv. Mater. 18:2213–2215.
  • Cui, L., X. Tong, X. Yan, G. Liu, and Y. Zhao. 2004. Photoactive thermoplastic elastomers of azobenzene-containing triblock copolymers prepared through atom transfer radical polymerization. Macromolecules. 37:7097–7104.
  • Bates, F. S., and G. H. Fredrickson. 1999. Block copolymers-designer soft materials. Physics. Today. 52:32–38.
  • Peris, S., B. Tylkowski, J. Carles Ronda, R. Garcia‐Valls, R. José Antonio, M. Giamberini. 2009. Synthesis, characterization, and photoresponsive behavior of new azobenzene‐containing polyethers. J. Polym. Sci. A. Polym. Chem. 47:5426–5436.
  • Sin, S. L., L. H. Gan, X. Hu, K. C. Tam, and Y. Y. Gan. 2005. Photochemical and thermal isomerizations of azobenzene-containing amphiphilic diblock copolymers in aqueous micellar aggregates and in film. Macromolecules. 38:3943–3948.
  • Xu, J., W. Zhang, N. Zhou, J. Zhu, Z. Cheng, Y. Xu, and X. Zhu. 2008. Synthesis of azobenzene‐containing polymers via RAFT polymerization and investigation on intense fluorescence from aggregates of azobenzene‐containing amphiphilic diblock copolymers. J. Polym. Sci. A Polym. Chem. 46:5652–5662.
  • Kadota, S., K. Aoki, S. Nagano, and T. Seki. 2005. Photocontrolled microphase separation of block copolymers in two dimensions. J. Am. Chem. Soc. 127:8266–8267.
  • Barrett, C. J., P. L. Rochon, and A. L. Natansohn. 1998. Model of laser-driven mass transport in thin films of dye-functionalized polymers. J. Chem. Phys. 109:1505–1516.
  • Hafiz, H. R., and F. Nakanishi. 2003. Photoresponsive liquid crystal display driven by new photochromic azobenzene-based Langmuir–Blodgett films. Nanotechnology. 14:649–654.
  • Pedersen, T. G., P. M. Johansen, and H. C. Pedersen. 2000. Characterization of azobenzene chromophores for reversible optical data storage: molecular quantum calculations. J. Opt. A Pure Appl. Opt. 2:272–278.
  • Wu, Y., A. Kanazawa, T. Shiono, T. Ikeda, and Q. Zhang. 1999. Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 4. Dynamic study of the alignment process. Polymer. 40:4787–4793.
  • Li, Z., Y. Zhang, L. Zhu, T. Shen, and H. Zhang. 2010. Efficient synthesis of photoresponsive azobenzene-containing side-chain liquid crystalline polymers with high molecular weights by click chemistry. Polym. Chem. 1:1501–1511.
  • Li, J., K. Kamata, M. Komura, T. Yamada, H. Yoshida, and T. Iyoda. 2007. Anisotropic ion conductivity in liquid crystalline diblock copolymer membranes with perpendicularly oriented PEO cylindrical domains. Macromolecules. 40:8125–8128.
  • Ikkala, O., and G. Ten brinke. 2002. Functional materials based on self-assembly of polymeric supramolecules. Science. 295:2407–2409.
  • Verploegen, E., T. Zhang, Y. S. Jung, C. Ross, and P. T. Hammond. 2008. Controlling the morphology of side chain liquid crystalline block copolymer thin films through variations in liquid crystalline content. Nano Lett. 8:3434–3440.
  • Templin, M., A. Franck, A. Du Chesne, H. Leist, Y. Zhang, R. Ulrich, V. Schädler, and U. Wiesner. 1997. Organically modified aluminosilicate mesostructures from block copolymer phases. Science. 278:1795–1798.
  • Haupt, M., S. Miller, R. Glass, M. Arnold, R. Sauer, K. Thonke, M. Möller, and J. P. Spatz. 2003. Nanoporous gold films created using templates formed from self‐assembled structures of Inorganic-Block copolymer micelles. Adv. Mater. 15:829–831.
  • Spatz, J. P., T. Herzog, S. Mößmer, P. Ziemann, and M. Möller. 1999. Micellar inorganic-polymer hybrid systems-a tool for nanolithography. Adv. Mater. 11:149–153.
  • Haupt, M., S. Miller, A. Ladenburger, R. Sauer, K. Thonke, J. P. Spatz, S. Riethmüller, M. Möller, and F. Banhart. 2002. Semiconductor nanostructures defined with self-organizing polymers. J. Appl. Phys. 91:6057–6059.
  • Wang, J., B. Wu, S. Li, G. Sinawang, X. Wang, and Y. He. 2016. Synthesis and characterization of photoprocessable lignin-based azo polymer. ACS Sustainable Chem. Eng. 4:4036–4042.
  • Jin, Q., G. Liu, X. Liu, and J. Ji. 2010. Photo-responsive supramolecular self-assembly and disassembly of an azobenzene-containing block copolymer. Soft Matter. 6:5589–5595.
  • Rao, J., and A. Khan. 2013. Enzyme sensitive synthetic polymer micelles based on the azobenzene motif. J. Am. Chem. Soc. 135:14056–14059.
  • Rao, J., and A. Khan. 2015. Enzymatic ‘charging’of synthetic polymers. Polym. Chem. 6:686–690.
  • Rao, J., C. Hottinger, and A. Khan. 2014. Enzyme-triggered cascade reactions and assembly of abiotic block copolymers into micellar nanostructures. J. Am. Chem. Soc. 136:5872–5875.
  • Lodge, T. P. 2003. Block copolymers: past successes and future challenges. Macromol. Chem. Phys. 204:265–273.
  • Segalman, R. A. 2005. Patterning with block copolymer thin films. Mater. Sci. Eng. R. 48:191–226.
  • Kim, D. H., S. H. Kim, K. Lavery, and T. P. Russell. 2004. Inorganic nanodots from thin films of block copolymers. Nano Lett. 4:1841–1844.
  • Haryono, A., and W. H. Binder. 2006. Controlled arrangement of nanoparticle arrays in block‐copolymer domains. Small. 2:600–611
  • Lee, K. W., K. H. Wei, and H. C. Lin. 2006. Synthesis and characterization of liquid‐crystalline block copolymers with cyanoterphenyl moieties by atom transfer radical polymerization. J. Polym. Sci. A Polym. Chem. 44:4593–4602.
  • He, X., W. Sun, D. Yan, M. Xie, and Y. Zhang. 2008. Synthesis and characterization of side‐chain liquid crystalline ABC triblock copolymers with p‐methoxyazobenzene moieties by atom transfer radical polymerization. J. Polym. Sci. A Polym. Chem. 46:4442–4450.
  • Zenati, A., and S. Thammalangsy. 2018. Characteristics and self‐assembly behaviors of photochromic triblock azo‐copolymers based on hard‐soft‐hard segments synthesized via RAFT process. J. Polym. Sci. Part A: Polym. Chem. 56:1617–1629.
  • Stenzel, M. H., and T. P. Davis. 2002. Star polymer synthesis using trithiocarbonate functional β‐cyclodextrin cores (reversible addition–fragmentation chain‐transfer polymerization). J. Polym. Sci. A Polym. Chem. 40:4498–4512.
  • Tian, Y., K. Watanabe, X. Kong, J. Abe, and T. Iyoda. 2002. Synthesis, nanostructures, and functionality of amphiphilic liquid crystalline block copolymers with azobenzene moieties. Macromolecules. 35:3739–3747.
  • Wang, J., S. Wang, Y. Zhou, X. Wang, and Y. He. 2015. Fast photoinduced large deformation of colloidal spheres from a novel 4-arm azobenzene compound. Acs Appl. Mater. Interfaces. 7:16889–16895.
  • Knuesel, R. J., and H. O. Jacobs. 2010. Self-assembly of microscopic chiplets at a liquid–liquid–solid interface forming a flexible segmented monocrystalline solar cell. Proc. Natl. Acad. Sci. 107:993–998.
  • Moad, G., E. Rizzardo, and S. H. Thang. 2013. RAFT polymerization and some of its applications. Chem Asian J. 8:1634–1644.
  • Zhang, Y., Z. Cheng, X. Chen, W. Zhang, J. Wu, J. Zhu, and X. Zhu. 2007. Synthesis and photoresponsive behaviors of well-defined azobenzene-containing polymers via RAFT polymerization. Macromolecules. 40:4809–4817.
  • Harvison, M. A., and A. B. Lowe. 2011. Combining RAFT radical polymerization and click/highly efficient coupling chemistries: a powerful strategy for the preparation of novel materials. Macromol. Rapid Commun. 32:779–800.
  • Rajasekhar, T., M. Trinadh, R. Sahoo, S. Dhara, and A. V. Sainath. 2015. Synthesis and characterization of novel ABA-type azobenzene-containing tri-block copolymers from telechelic polystyrene. Des. Monomers. Polym. 18:145–156.
  • Zhao, Y., B. Qi, X. Tong, and Y. Zhao. 2008. Synthesis of double side-chain liquid crystalline block copolymers using RAFT polymerization and the orientational cooperative effect. Macromolecules, 41:3823–3831.
  • Levit, M., N. Zashikhina, A. Dobrodumov, A. Kashina, I. Tarasenko, E. Panarin, S. Fiorucci, E. Korzhikova-Vlakh, and T. Tennikova. 2018. Synthesis and characterization of well-defined poly (2-deoxy-2-methacrylamido-d-glucose) and its biopotential block copolymers via RAFT and ROP polymerization. Eur. Polym. J. 105:26–37.
  • He, X., H. Zhang, D. Yan, and X. Wang. 2003. Synthesis of side‐chain liquid‐crystalline homopolymers and triblock copolymers with p‐methoxyazobenzene moieties and poly (ethylene glycol) as coil segments by atom transfer radical polymerization and their thermotropic phase behavior. J. Polym. Sci. A Polym. Chem. 41:2854–2864.
  • Cui, L., Y. Zhao, A. Yavrian, and T. Galstian. 2003. Synthesis of azobenzene-containing diblock copolymers using atom transfer radical polymerization and the photoalignment behavior. Macromolecules. 36:8246–8252.
  • Fu, X., Y. Xiao, K. Hu, J. Wang, J. Lei, and C. Zhou. 2016. Thermosetting solid-solid phase change materials composed of poly (ethylene glycol)-based two components: flexible application for thermal energy storage. Chem. Eng. J. 291:138–148.
  • He, X., W. Sun, D. Yan, and L. Liang. 2008. Novel ABC2-type liquid-crystalline block copolymers with azobenzene moieties prepared by atom transfer radical polymerization. Eur. Polym. J. 44:42–49.
  • Sun, L., Y. Liu, L. Zhu, B. S. Hsiao, and C. A. Avila-Orta. 2004. Self-assembly and crystallization behavior of a double-crystalline polyethylene-block-poly (ethylene oxide) diblock copolymer. Polymer. 45:8181–8193.
  • Zhao, Y., and J. He. 2009. Azobenzene-containing block copolymers: the interplay of light and morphology enables new functions. Soft Matter. 5:2686–2693.
  • Peponi, L., A. Tercjak, L Martin, I. Mondragon, and J. M. Kenny. 2011. Morphology-properties relationship on nanocomposite films based on poly (styrene-block-diene-block-styrene) copolymers and silver nanoparticles. Express Polym. Lett. 5:104–118.
  • Zhu, Y., Y. Zhou, Z. Chen, R. Lin, and X. Wang. 2012. Photoresponsive diblock copolymers bearing strong push-pull azo chromophores and cholesteryl groups. Polymer. 53:3566–3576.
  • Miyatake, M., T. Kimura, H. Komiyama, M. Komura, and T. Iyoda. 2012. Large-area fabrication of free-standing thick membrane with microphase-separated cylindrical nanostructure. Trans. Mat. Res. Soc. Japan. 37:409–412.
  • Tamai, N., and H. Miyasaka. 2000. Ultrafast dynamics of photochromic systems. Chem. Rev. 100:1875–1890.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.