379
Views
11
CrossRef citations to date
0
Altmetric
Articles

Multi-level collagen aggregates and their applications in biomedical applications

, , , , , ORCID Icon, , & show all
Pages 667-683 | Received 08 Aug 2019, Accepted 10 Aug 2019, Published online: 20 Aug 2019

References

  • Dan, W. H. 2007. Application of biomass in biomedical materials and its development trend. Funct. Mater. Inf. 05:33–34.
  • Sun, J. L., K. Jiao, L. N. Niu, Y. Jiao, Q. Song, L. J. Shen, F. R. Tay, and J. H. Chen. 2017. Intrafibrillar silicified collagen scaffold modulates monocyte to promote cell homing, angiogenesis and bone regeneration. Biomaterials 113:203–216.
  • Fratzl, P. 2008. Collagen: structure and mechanics, an introduction. In Collagen, ed. P. Fratzl. Boston, MA: Springer.
  • Shoulders, M. D., and R. T. Raines. 2009. Collagen structure and stability. Annu. Rev. Biochem. 78:929–958.
  • Gelse, K. 2003. Collagens—structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55:1531–1546.
  • Olszta, M. J., X. Cheng, S. J. Sang, R. Kumar, Y. Y. Kim, M. J. Kaufman, E. P. Douglas, and L. B. Gower. 2007. Bone structure and formation: a new perspective. Mater. Sci. Eng. R 58:77–116.
  • Pp, F., K. I, and K. K. 1972. The covalent structure of collagen. Amino acid sequence of the N-terminal region of 2-CB4 from calf and rat skin collagen. FEBS Lett. 36:289–291.
  • Ottani, V., M. Raspanti, and A. Ruggeri. 2001. Collagen structure and functional implications. Micron 32:251–260.
  • Joseph P R O, O., C. I. Thomas, M. Andrew, and J. W. Tim. 2006. Microfibrillar structure of type I collagen in situ. Proc. Natl. Acad. Sci. U.S.A. 103:9001–9005.
  • Smith, J. W. 1968. Molecular pattern in native collagen. Nature 219:157–158.
  • Prockop, D. J., and A. Fertala. 1998. The collagen fibril: the almost crystalline structure. J. Struct. Biol. 122:111–118.
  • Bozec, L., D. H. G. Van, and M. Horton. 2007. Collagen fibrils: nanoscale ropes. Biophys. J. 92:70–75.
  • Fratzl, P. 2004. Cellulose and collagen: from fibres to tissues. Curr. Opin. Colloid Interface Sci. 8:32–39. doi:10.1016/S1359-0294(03)00011-6
  • Wang, L., X. An, F. Yang, Z. Xin, L. Zhao, and Q. Hu. 2008. Isolation and characterisation of collagens from the skin, scale and bone of deep-sea redfish (sebastes mentella). Food Chem. 108:616–623.
  • , David, A., Hall 1979. International Review of Connective Tissue Research.
  • Schwick, H. G., and K. Heide. 1969. Immunochemistry and immunology of collagen and gelatin. Bibl. Haematol. 33:111–125.
  • Liu, X., N. Dan, Y. Hu, S. Xiao, and W. Dan. 2012. The optimization of bovine tendon collagen fiber extraction conditions and structural characterization of collagen fiber. J. Funct. Mater. 43:136–140.
  • Ju, H., X. Liu, W. Dan, N. Dan, J. Chen, and Y. Zhang. 2015. Enzymatic grafting of eugenol-bridged jute fiber with acrylamide. J. Funct. Mater. 15:15031–15034.
  • Ju, H.-Y., M. Liu, W.-H. Dan, Y. Hu, H. Lin, and N.-H. Dan. 2013. Dynamic rheological property of type I collagen fibrils. J. Mech. Med. Biol. 13:3221.
  • Zhu, S., Q. J. Yuan, T. Yin, J. You, Z. Gu, S. Xiong, and Y. Hu. 2018. Self-assembly of collagen-based biomaterials: preparation, characterizations and biomedical applications. J. Mater. Chem. B. 6:2650.
  • Yang, H., S. Xu, L. Shen, W. Liu, and G. Li. 2016. Changes in aggregation behavior of collagen molecules in solution with varying concentrations of acetic acid. Int. J. Biol. Macromol. 92:581–586.
  • Liu, X., N. Dan, and W. Dan. 2017. Insight into the collagen assembly in the presence of lysine and glutamic acid: an in vitro study. Mater. Sci. Eng. C Mater. Biol. Appl. 70:689–700.
  • Liu, X., N. Dan, and W. Dan. 2016. Preparation and characterization of an advanced collagen aggregate from porcine acellular dermal matrix. Int. J. Biol. Macromol. 88:179–188.
  • Pabst, A. M., A. Happe, A. Callaway, T. Ziebart, S. I. Stratul, M. Ackermann, M. A. Konerding, B. Willershausen, and A. Kasaj. 2014. In vitro and in vivo characterization of porcine acellular dermal matrix for gingival augmentation procedures. J. Periodont. Res. 49:371–381.
  • Chaudhari, A. A., K. Vig, D. R. Baganizi, R. Sahu, S. Dixit, V. Dennis, S. R. Singh, and S. R. Pillai. 2016. Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. IJMS 17:1974.
  • Parmaksiz, M., A. Dogan, S. Odabas, A. E. Elcin, and Y. M. Elcin. 2016. Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomed. Mater. 11:022003.
  • Hu, Y., L. Liu, Z. Gu, W. Dan, N. Dan, and X. Yu. 2014. Modification of collagen with a natural derived cross-linker, alginate dialdehyde. Carbohydr. Polym. 102:324–332.
  • Xu, Y., L. Li, X. Yu, Z. Gu, and X. Zhang. 2012. Feasibility study of a novel crosslinking reagent (alginate dialdehyde) for biological tissue fixation. Carbohydr. Polym. 87:1589–1595.
  • Sionkowska, A., A. Płanecka, J. Kozłowska, and J. Skopińska-Wiśniewska. 2009. Surface properties of UV-irradiated poly(vinyl alcohol) films containing small amount of collagen. Appl. Surf. Sci. 255:4135–4139.
  • Hu, Y., L. Liu, W. Dan, N. Dan, Z. Gu, and X. Yu. 2013. Synergistic effect of carbodiimide and dehydrothermal crosslinking on acellular dermal matrix. Int. J. Biol. Macromol. 55:221–230.
  • Kozłowska, J., and A. Sionkowska. 2015. Effects of different crosslinking methods on the properties of collagen–calcium phosphate composite materials. Int. J. Biol. Macromol. 74:397–403.
  • Nianhua, D., Shiwei, X. H. Yang C., and Yining, Danweihua. 2015. Cross-linking reaction between genepin and porcine acellular dermal matrix. J. Soc. Leather Technol. Chem. 99:176–182.
  • Xiao, S., W. Dan, and N. Dan. 2015. Insights into the interactions between porcine collagen and a Zr–Al–Ti metal complex. RSC Adv. 5:88324–88330.
  • Chen, Y., N. Dan, W. Dan, and G. Yu. 2018. Supercritical CO2 fluid-assisted cross-linking of porcine acellular dermal matrix by ethylene glycol diglycidyl ether. J. CO2 Util. 25:264–274.
  • Liu, T., W. Dan, N. Dan, X. Liu, X. Liu, and X. Peng. 2017. A novel grapheme oxide-modified collagen-chitosan bio-film for controlled growth factor release in wound healing applications. Mater. Sci. Eng. C Mater. Biol. Appl. 77:202–211.
  • Chen, Y., N. Dan, L. Wang, X. Liu, and W. Dan. 2016. Study on the cross-linking effect of a natural derived oxidized chitosan oligosaccharide on the porcine acellular dermal matrix. RSC Adv. 6:38052–38063.
  • Liu, X., N. Dan, W. Dan, and J. Gong. 2016. Feasibility study of the natural derived chitosan dialdehyde for chemical modification of collagen. Int. J. Biol. Macromol. 82:989–997.
  • Zhu, S., Z. Gu, Y. Hu, W. Dan, and S. Xiong. 2016. Evaluation of alginate dialdehyde as a suitable crosslinker on modifying porcine acellular dermal matrix: the aggregation of collagenous fibers. J. Appl. Polym. Sci. 133:43550.
  • Kanth, S. V., A. Ramaraj, J. R. Rao, and B. U. Nair. 2009. Stabilization of type I collagen using dialdehyde cellulose. Process Biochem. 44:869–874.
  • Liu, T., L. Shi, Z. Gu, W. Dan, and N. Dan. 2017. A novel combined polyphenol-aldehyde crosslinking of collagen film—applications in biomedical materials. Int. J. Biol. Macromol. 101:889–895.
  • Chen, Y., N. Dan, W. Dan, X. Liu, and L. Cong. 2019. A novel antibacterial acellular porcine dermal matrix cross-linked with oxidized chitosan oligosaccharide and modified by in situ synthesis of silver nanoparticles for wound healing applications. Mater. Sci. Eng. C Mater. Biol. Appl. 94:1020–1036.
  • Liu, X., S. Zheng, W. Dan, and N. Dan. 2016. Ultrasound-mediated preparation and evaluation of a collagen/PVP-PCL micro- and nanofiber scaffold electrospun from chloroform/ethanol mixture. Fibers Polym. 17:1186–1197.
  • Jia, L., M. P. Prabhakaran, X. Qin, and S. Ramakrishna. 2014. Guiding the orientation of smooth muscle cells on random and aligned polyurethane/collagen nanofibers. J. Biomater. Appl. 29:364.
  • Wong, C. S., L. Xin, X. Zhiguang, L. Tong, and W. Xungai. 2013. Elastin and collagen enhances electrospun aligned polyurethane as scaffolds for vascular graft. J. Mater. Sci: Mater. Med. 24:1865–1874.
  • Yong, C. S., J. H. Lee, L. Jin, J. K. Min, Y. J. Kim, J. K. Hyun, T. G. Jung, S. W. Hong, and D. W. Han. 2015. Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices. J. Nanobiotechnol. 13:21.
  • Huang, R., W. Li, X. Lv, Z. Lei, Y. Bian, H. Deng, H. Wang, J. Li, and X. Li. 2015. Biomimetic LBL structured nanofibrous matrices assembled by chitosan/collagen for promoting wound healing. Biomaterials 53:58–75.
  • Zhang, L., K. Li, W. Xiao, L. Zheng, Y. Xiao, H. Fan, and X. Zhang. 2011. Preparation of collagen–chondroitin sulfate–hyaluronic acid hybrid hydrogel scaffolds and cell compatibility in vitro. Carbohydr. Polym. 84:118–125.
  • Zhilian, Y., L. Xiao, P. J. Molino, and G. G. Wallace. 2011. Bio-functionalisation of polydimethylsiloxane with hyaluronic acid and hyaluronic acid–collagen conjugate for neural interfacing. Biomaterials 32:4714–4724.
  • Maghdouri-White, Y., G. L. Bowlin, C. A. Lemmon, and D. Dréau. 2014. Mammary epithelial cell adhesion, viability, and infiltration on blended or coated silk fibroin-collagen type I electrospun scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 43:37–44.
  • Zhu, S., X. Yu, S. Xiong, L. Ru, Z. Gu, J. You, Y. Tao, and H. Yang. 2017. Insights into the rheological behaviors evolution of alginate dialdehyde crosslinked collagen solutions evaluated by numerical models. Mater. Sci. Eng. C Mater. Biol. Appl. 78:727.
  • Cui, G., N. Dan, and W. Dan. 2016. Preparation and characterization of novel dopamine-based bioadhesive hydrogels. Chem. Col. Chinese Univ. 2:318–325.
  • Hu, Y., S. Zhu, S. Xiong, S. Zhao, Y. Liu, T. Yin, and J. You. 2016. A preparation method of collagen-based mussel biomimetic adhesive hydrogel. Chinese patent No 105457085A, 2016-04-06.
  • Ju, H., N. Dan, J. Li, W. Dan, and M. Liu. 2013. Preparation and properties of collagen fiber/PVA blend sponges. China Leather 42:20–25.
  • Liu, X., Z. Yan, X. Wang, X. Luo, T. Qiang, and W. Dan. 2018. Development of a novel collagenous matrix based on Tissue-Mimicking advanced collagen aggregate synthetically cross-linked with biological cross-linkers, OCS, and β-ODAP for wound healing. ACS Sustainable Chem. Eng. 6:17142–17151.
  • Vardanian, A. J., J. L. Clayton, J. Roostaeian, V. Shirvanian, L. A. Da, J. E. Lipa, C. Crisera, and J. H. Festekjian. 2011. Comparison of implant-based immediate breast reconstruction with and without acellular dermal matrix. Plast. Reconstruct. Surg. 128:403e.
  • Kilchenmann, A. J. R., A. M. Lardi, M. Ho-Asjoe, K. Junge, and J. Farhadi. 2014. An evaluation of resource utilisation of single stage porcine acellular dermal matrix assisted breast reconstruction: a comparative study. Breast 23:876–882.
  • Ge, L., S. Zheng, and H. Wei. 2009. Comparison of histological structure and biocompatibility between human acellular dermal matrix (ADM) and porcine ADM. Burns 35:46–50.
  • Lee, C. U., A. Bobr, and J. Torres-Mora. 2017. Radiologic-Pathologic correlation: acellular dermal matrix (alloderm®) used in breast reconstructive surgery. J. Clin. Imaging Sci. 7:13.
  • Hu, Y., W. Dan, S. Xiong, Y. Kang, A. Dhinakar, J. Wu, and Z. Gu. 2017. Development of collagen/polydopamine complexed matrix as mechanically enhanced and highly biocompatible semi-natural tissue engineering scaffold. Acta Biomater. 47:135–148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.