371
Views
11
CrossRef citations to date
0
Altmetric
Articles

Development and analysis of a novel PVDF membrane with higher content of β phase

, , , , ORCID Icon, , , & ORCID Icon show all
Pages 684-695 | Received 31 Jul 2019, Accepted 10 Aug 2019, Published online: 26 Aug 2019

References

  • Huang, T., C. Wang, H. Yu, H. Wang, Q. Zhang, and M. Zhu. 2015. Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy 14:226–235.
  • Li, B., C. Xu, J. Zheng, and C. Xu. 2014. Sensitivity of pressure sensors enhanced by doping silver nanowires. Sensors (Basel) 14:9889–9899.
  • Qiu, H.-J., W.-Z. Song, X.-X. Wang, J. Zhang, Z. Fan, M. Yu, S. Ramakrishna, and Y.-Z. Long. 2019. A calibration-free self-powered sensor for vital sign monitoring and finger tap communication based on wearable triboelectric nanogenerator. Nano Energy 58:536–542.
  • Alam, M. M., A. Sultana, D. Sarkar, and D. Mandal. 2017. Electroactive beta-crystalline phase inclusion and photoluminescence response of a heat-controlled spin-coated PVDF/TiO2 free-standing nanocomposite film for a nanogenerator and an active nanosensor. Nanotechnology 28:365401.
  • Haddadi, S. A., S. Ghaderi, M. Amini, and S. A. A. Ramazani. 2018. Mechanical and piezoelectric characterizations of electrospun PVDF-nanosilica fibrous scaffolds for biomedical applications. Materials Today: Proc. 5:15710–15716.
  • Wang, A., Z. Liu, M. Hu, C. Wang, X. Zhang, B. Shi, Y. Fan, Y. Cui, Z. Li, and K. Ren. 2018. Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing. Nano Energy 43:63–71.
  • Rajabi, A. H., M. Jaffe, and T. L. Arinzeh. 2015. Piezoelectric materials for tissue regeneration: a review. Acta Biomater. 24:12–23.
  • Tandon, B., J. J. Blaker, and S. H. Cartmell. 2018. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater. 73:1–20.
  • Jahan, N., F. Mighri, D. Rodrigue, and A. Ajji. 2017. Enhanced electroactive β phase in three phase PVDF/CaCO3/nanoclay composites: effect of micro-CaCO3and uniaxial stretching. J. Appl. Polym. Sci. 134:44940.
  • Prabhakaran, T., and J. Hemalatha. 2013. Ferroelectric and magnetic studies on unpoled poly (vinylidine fluoride)/Fe3O4 magnetoelectric nanocomposite structures. Mater. Chem. Phys. 137:781–787.
  • Xue, W., C. Lv, Y. Jing, F. Chen, and Q. Fu. 2017. Fabrication of electrospun PVDF nanofibers with higher content of polar β phase and smaller diameter by adding a small amount of dioctadecyl dimethyl ammonium chloride. Chin. J. Polym. Sci. 35:992–1000.
  • Gee, S., B. Johnson, and A. L. Smith. 2018. Optimizing electrospinning parameters for piezoelectric PVDF nanofiber membranes. J. Membrane Sci. 563:804–812.
  • Gomes, J., J. Serrado Nunes, V. Sencadas, and S. Lanceros-Mendez. 2010. Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart Mater. Struct. 19:065010.
  • Lee, C., D. Wood, D. Edmondson, D. Yao, A. E. Erickson, C. T. Tsao, R. A. Revia, H. Kim, and M. Zhang. 2016. Electrospun uniaxially-aligned composite nanofibers as highly-efficient piezoelectric material. Ceram. Int. 42:2734–2740.
  • Nunes-Pereira, J., V. Sencadas, V. Correia, V. F. Cardoso, W. Han, J. G. Rocha, and S. Lanceros-Méndez. 2015. Energy harvesting performance of BaTiO3/poly(vinylidene fluoride–trifluoroethylene) spin coated nanocomposites. Comp. Part B: Eng. 72:130–136.
  • Li, Y., and M. Kotaki. 2013. Influence of additive on structure of PVDF nanofibers electrospun via new spinneret design. J. Appl. Polym. Sci. 130:1752–1758.
  • Liu, Z. H., C. T. Pan, C. Y. Su, L. W. Lin, Y. J. Chen, and J. S. Tsai. 2014. A flexible sensing device based on a PVDF/MWCNT composite nanofiber array with an interdigital electrode. Sens. Actuators A: Phys. 211:78–88.
  • Baji, A., Y. W. Mai, Q. Li, and Y. Liu. 2011. Electrospinning induced ferroelectricity in poly(vinylidene fluoride) fibers. Nanoscale 3:3068–3071.
  • Zhong, K., and Q. Wang. 2010. Optimization of ultrasonic extraction of polysaccharides from dried longan pulp using response surface methodology. Carbohydrate Polymers 80: 19–25.
  • Ghani, Z. A., M. S. Yusoff, N. Q. Zaman, M. F. M. A. Zamri, and J. Andas. 2017. Optimization of preparation conditions for activated carbon from banana pseudo-stem using response surface methodology on removal of color and COD from landfill leachate. Waste Manage. 62:177–187.
  • Bezerra, M. A., R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira. 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977.
  • Guo, W. L., Y. B. Zhang, J. H. Lu, L. Y. Jiang, L. R. Teng, W. Yao, and Y. C. Liang. 2010. Optimization of fermentation medium for nisin production from Lactococcus lactis subsp. lactis using response surface methodology (RSM) combined with artificial neural network-genetic algorithm (ANN-GA). African J. Biotechnol. 9:6264–6272.
  • Abbasipour, M., R. Khajavi, A. A. Yousefi, M. E. Yazdanshenas, and F. Razaghian. 2017. The piezoelectric response of electrospun PVDF nanofibers with graphene oxide, graphene, and halloysite nanofillers: a comparative study. J. Mater. Sci: Mater. Electron. 28:15942–15952.
  • Ahuja, S. K., G. M. Ferreira, and A. R. Moreira. 2004. Application of plackett‐burman design and response surface methodology to achieve exponential growth for aggregated shipworm bacterium. Biotechnol. Bioeng. 85:666–675.
  • Han, L., X. Wu, L. Zhang, A. Sui, B. Qu, and S. Wang. 2018. Optimization of fermentation process parameters for ginsenoside re bioconversion by Plackett–Burman and Box–Benhnken design. MATEC Web Conf. 238:04001.
  • Alaeddini, A.,. A. Murat, K. Yang, and B. Ankenman. 2013. An efficient adaptive sequential methodology for expensive response surface optimization. Qual. Reliab. Engng. Int. 29:799–817.
  • Sencadas, V., R. Gregorio, and S. Lanceros-Méndez. 2009. α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J. Macromol. Sci., Part B. 48:514–525.
  • An, N., H. Liu, Y. Ding, M. Zhang, and Y. Tang. 2011. Preparation and electroactive properties of a PVDF/nano-TiO2 composite film. Appl. Surf. Sci. 257:3831–3835.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.