101
Views
4
CrossRef citations to date
0
Altmetric
Articles

Characterization and in vitro experiments of composite membrane materials that polydopamine-loaded on the surface of collagen modified by a novel nanomaterial graphene oxide

ORCID Icon, , , , , , , & ORCID Icon show all
Pages 741-751 | Received 14 Sep 2019, Accepted 17 Sep 2019, Published online: 04 Oct 2019

Reference

  • Lin, Y. J., G. H. Lee, C. W. Chou, Y. P. Chen, T. H. Wu, and H. R. Lin. 2015. Stimulation of wound healing by PU/hydrogel composites containing fibroblast growth factor-2. J. Mater. Chem. B. 3:1931–1941.
  • Yu, H., X. Chen, J. Cai, D. Ye, Y. Wu, L. Fan, and P. Liu. 2019. Novel porous three-dimensional nanofibrous scaffolds for accelerating wound healing. Chem. Eng. J. 369:253–262.
  • Tao, G., Y. Wang, R. Cai, H. Chang, K. Song, H. Zuo, P. Zhao, Q. Xia, and H. He. 2019. Design and performance of sericin/poly(vinyl alcohol) hydrogel as a drug delivery carrier for potential wound dressing application. Mater. Sci. Eng. C Mater. Biol. Appl. 101:341–351.
  • Simoes, D., S. P. Miguel, and M. P. Ribeiro. 2018. Recent advances on antimicrobial wound dressing: a review. Eur. J. Pharm. Biopharm. 127:130–141.
  • Liu, X., S. Zheng, W. Dan, and N. Dan. 2016. Ultrasound-mediated preparation and evaluation of a collagen/pvp-pcl micro- and nanofiber scaffold electrospun from chloroform/ethanol mixture. Fibers Polym. 17:1186–1197.
  • Shoulders, M. D., and R. T. Raines. 2009. Collagen structure and stability. Annu. Rev. Biochem. 78:929.
  • Liu, X., Z. Yan, X. Wang, X. Luo, T. Qiang, and W. Dan. 2018. Development of a novel collagenous matrix based on Tissue-Mimicking advanced collagen aggregate synthetically cross-linked with biological Cross-Linkers, OCS, and β-ODAP for wound healing. ACS Sustainable Chem. Eng. 6:17142–17151.
  • Jialong, C. 2010. Collagen/heparin coating on titanium surface improves the biocompatibility of titanium applied as a blood-contacting biomaterial. J. Biomed. Mater. Res. A. 95:341–349.
  • Gough, J. E., C. A. Scotchford, and S. Downes. 2002. Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. J. Biomed. Mater. Res. 61:121–130.
  • Zhang, X., Y. Yang, J. Yao, Z. Shao, and X. Chen. 2014. Strong collagen hydrogels by oxidized dextran modification. ACS Sustainable Chem. Eng. 2:1318–1324.
  • Velmurugan, P., R. R. Jonnalagadda, and B. U. Nair. 2013. Biochemical and biophysical characterization of EDC treated rattus type I collagen. Process. Biochem. 48:1059–1064.
  • Tian, Z., K. Wu, W. Liu, L. Shen, and G. Li. 2015. Two-dimensional infrared spectroscopic study on the thermally induced structural changes of glutaraldehyde-crosslinked collagen. Spectrochimica Acta A: Mol. Biomol. Spectroscopy. 140:356–363.
  • Geim, A. K., and K. S. Novoselov. 2007. The rise of graphene. Nat. Mater. 6:183–191.
  • Zhang, B., Y. Wang, and G. Zhai. 2016. Biomedical applications of the graphene-based materials. Mater. Sci. Eng. C. 61:953–964.
  • Dreyer, D. R., S. Park, C. W. Bielawski, and R. S. Ruoff. 2010. The chemistry of graphene oxide. Chem. Soc. Rev. 39:228–240.
  • De Marco, P., S. Zara, M. De Colli, M. Radunovic, V. Lazović, V. Ettorre, A. Di Crescenzo, A. Piattelli, A. Cataldi, and A. Fontana. 2017. Graphene oxide improves the biocompatibility of collagen membranes in an in vitro model of human primary gingival fibroblasts. Biomed. Mater. 12:055005.
  • Radunovic, M., M. De Colli, P. De Marco, C. Di Nisio, A. Fontana, A. Piattelli, A. Cataldi, and S. Zara. 2017. Graphene oxide enrichment collagen membranes improves DPSCs differentiation and controls inflammation occurrencel. J. Biomed. Mater. Res. 105:2312.
  • Zine, R., and M. Sinha. 2017. Nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/collagen/graphene oxide scaffolds for wound coverage. Mater. Sci. Eng. C. 80:129.
  • Cox, J. D., M. S. Curry, S. K. Skirboll, P. L. Gourley, and D. Y. Sasaki. 2002. Surface passivation of a microfluidic device to glial cell adhesion: a comparison of hydrophobic and hydrophilic SAM coatings. Biomaterials. 23:929–935.
  • Hu, Y., W. Dan, S. Xiong, Y. Kang, A. Dhinakar, J. Wu, and Z. Gu. 2017. Development of collagen/polydopamine complexed matrix as mechanically enhanced and highly biocompatible semi-natural tissue engineering scaffold. Acta Biomater. 47:135–148.
  • Sahiner, N., S. Sagbas, M. Sahiner, D. A. Blake, and W. F. Reed. 2018. Polydopamine particles as nontoxic, blood compatible, antioxidant and drug delivery materials. Colloids Surf. B. 172:618–626.
  • Liu, X., N. Dan, and W. Dan. 2016. Preparation and characterization of an advanced collagen aggregate from porcine acellular dermal matrix. Int. J. Biol. Macromol. 88:179.
  • Hu, Y., L. Liu, Z. Gu, W. Dan, N. Dan, and X. Yu. 2014. Modification of collagen with a natural derived cross-linker, alginate dialdehyde. Carbohydr. Polym. 102:324–332.
  • Rodriguez, F., L. Moran, and G. Gonzalez. 2017. Collagen extraction from mussel byssus: a new marine collagen source with physicochemical properties of industrial interest. J. Food Sci. Technol. 54:1228–1238.
  • Chang, J. J., Y. H. Lee, M. H. Wu, M. C. Yang, and C. T. Chien. 2012. Preparation of electrospun alginate fibers with chitosan sheath. Carbohydr. Polym. 87:2357–2361.
  • Wu, C.-S. 2015. Influence of modified polyester on the material properties of collagen-based biocomposites and in vitro evaluation of cytocompatibility. Mater. Sci. Eng. C. 48:310–319.
  • Wei, C., L. Mingzhu, and L. Jiyang. 2014. A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide. ACS Nano. 8:9511–9517.
  • Lad, P. P., M. Gurjar, and S. Gunda. 2015. The effect of disinfectants and a surface wetting agent on the wettability of elastomeric impression materials: an in vitro study. J Int Oral Health Jioh. 7:80–83.
  • Dreyer, D. R., D. J. Miller, B. D. Freeman, D. R. Paul, and C. W. Bielawski. 2012. Elucidating the structure of poly(dopamine). Langmuir. 28:6428–6435.
  • Wu, X., Y. Wu, L. Chen, L. Yan, S. Zhou, Q. Zhang, C. Li, Y. Yan, and H. Li. 2018. Bioinspired synthesis of pDA@GO-based molecularly imprinted nanocomposite membranes assembled with dendrites-like Ag microspheres for high-selective adsorption and separation of ibuprofen. J Membr Sci. 553:151–162.
  • Delparastan, P., K. G. Malollari, H. Lee, and P. B. Messersmith. 2019. Direct evidence for the polymeric nature of polydopamine. Angew. Chem. Int. Ed. Engl. 58:1077–1082.
  • Zhou, F., L. Yuan, H. Huang, and H. Chen. 2009. Phenomenon of “contact guidance” on the surface with nano-micro-groove-like pattern and cell physiological effects. Chin. Sci. Bull. 54:3200–3205.
  • Xinhua, L. 2018. Development of a novel collagenous matrix based on tissue-mimicking advanced collagen aggregate synthetically crosslinked with biological crosslinkers, OCS and β-ODAP for wound healing. ACS Sust. Chem. Eng. 6:17142–17151.
  • Zhang, E., J. Li, Y. Zhou, P. Che, B. Ren, Z. Qin, L. Ma, J. Cui, H. Sun, and F. Yao. 2017. Biodegradable and injectable thermoreversible xyloglucan based hydrogel for prevention of postoperative adhesion. Acta Biomaterialia. 55:420–433.
  • Li, W., J. Zhou, and Y. Xu. 2015. Study of the in vitro cytotoxicity testing of medical devices. Biomed. Rep. 3: 617–620.
  • Seabra, A. B., A. J. Paula, R. de Lima, O. L. Alves, and N. Durán. 2014. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 27:159–168.
  • Chang, Y., S. T. Yang, J.H. Liu, E. Dong, Y. Wang, A. Cao, Y. Liu, and H. Wang. 2011. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett. 200:201–210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.