275
Views
1
CrossRef citations to date
0
Altmetric
Articles

Guanidine masked catechol initiator promoted ring-opening polymerization of sarcosine N-carboxyanhydride

ORCID Icon, &
Pages 262-274 | Received 10 Mar 2020, Accepted 10 Jun 2020, Published online: 29 Jun 2020

References

  • Arslan, M., T. N. Gevrek, J. Lyskawa, S. Szunerits, R. Boukherroub, R. Sanyal, P. Woisel, and A. Sanyal. 2014. Bioinspired anchorable thiol-reactive polymers: synthesis and applications toward surface functionalization of magnetic nanoparticles. Macromolecules 47:5124–5134. doi:10.1021/ma500693f
  • Su, J., F. Chen, V. L. Cryns, and P. B. Messersmith. 2011. Catechol polymers for pH-responsive, targeted drug delivery to cancer cells. J. Am. Chem. Soc. 133:11850–11853. doi:10.1021/ja203077x
  • Lee, H., S. M. Dellatore, W. M. Miller, and P. B. Messersmith. 2007. Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430. doi:10.1126/science.1147241
  • Yu, M. E., and T. J. Deming. 1998. Synthetic polypeptide mimics of marine adhesives. Macromolecules 31:4739–4745. doi:10.1021/ma980268z
  • Dalsin, J. L., B. H. Hu, B. P. Lee, and P. B. Messersmith. 2003. Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J. Am. Chem. Soc. 125:4253–4258. doi:10.1021/ja0284963
  • Wang, J., C. Liu, X. Lu, and M. Yin. 2007. Co-polypeptides of 3,4-dihydroxyphenylalanine and L-lysine to mimic marine adhesive protein. Biomaterials 28:3456–3468. doi:10.1016/j.biomaterials.2007.04.009
  • Wu, Q., D. Yan, Y. Chen, T. Wang, F. Xiong, W. Wei, Y. Lu, W.-Y. Sun, J. J. Li, and J. Zhao. 2017. A redox-neutral catechol synthesis. Nat. Commun. 8:14227–14227. doi:10.1038/ncomms14227
  • Liu, Z., B.-H. Hu, and P. B. Messersmith. 2010. Acetonide protection of dopamine for the synthesis of highly pure N-docosahexaenoyldopamine. Tetrahedron Lett. 51:2403–2405. doi:10.1016/j.tetlet.2010.02.089
  • Sever, M. J., and J. J. Wilker. 2001. Synthesis of peptides containing DOPA (3,4-dihydroxyphenylalanine). Tetrahedron 57:6139–6146. doi:10.1016/S0040-4020(01)00601-9
  • Hu, B. H., and P. B. Messersmith. 2000. Protection of 3,4-dihydroxyphenylalanine (DOPA) for fmoc solid-phase peptide synthesis. Tetrahedron Lett. 41:5795–5798. doi:10.1016/S0040-4039(00)00957-6
  • Patel, P., C.-T. Chang, N. Kang, G.-J. Lee, W. S. Powell, and J. Rokach. 2007. Reductive deprotection of silyl groups with Wilkinson’s catalyst/catechol borane. Tetrahedron Lett. 48:5289–5292. doi:10.1016/j.tetlet.2007.05.118
  • Wilms, V. S., H. Bauer, C. Tonhauser, A.-M. Schilmann, M.-C. Müller, W. Tremel, and H. Frey. 2013. Catechol-initiated polyethers: multifunctional hydrophilic ligands for PEGylation and functionalization of metal oxide nanoparticles. Biomacromolecules 14:193–199. doi:10.1021/bm3015889
  • Lee, S. B., C. Gonzalez-Cabezas, K.-M. Kim, K.-N. Kim, and K. Kuroda. 2015. Catechol-functionalized synthetic polymer as a dental adhesive to contaminated dentin surface for a composite restoration. Biomacromolecules 16:2265–2275. doi:10.1021/acs.biomac.5b00451
  • Yamamoto, H., and T. Hayakawa. 1976. Letter: sense of helix poly-O,O′-dicarbobenzoxy-L-DOPA in solution. Macromolecules 9:532–534. doi:10.1021/ma60051a029
  • Van Dyck, S. M. O., G. L. F. Lemiere, T. H. M. Jonckers, and R. Dommisse. 2000. Synthesis of 4-O-methylcedrusin. Selective protection of catechols with diphenyl carbonate. Molecules 5:153–161. doi:10.3390/50200153
  • Sun, J., and R. N. Zuckermann. 2013. Peptoid polymers: a highly designable bioinspired material. ACS Nano. 7:4715–4732. doi:10.1021/nn4015714
  • Fetsch, C., A. Grossmann, L. Holz, J. F. Nawroth, and R. Luxenhofer. 2011. Polypeptoids from N-substituted glycine N-carboxyanhydrides: hydrophilic, hydrophobic, and amphiphilic polymers with poisson distribution. Macromolecules 44:6746–6758. doi:10.1021/ma201015y
  • Fetsch, C., and R. Luxenhofer. 2012. Highly defined multiblock copolypeptoids: pushing the limits of living nucleophilic ring-opening polymerization. Macromol. Rapid Commun. 33:1708–1713. doi:10.1002/marc.201200189
  • Gangloff, N., C. Fetsch, and R. Luxenhofer. 2013. Polypeptoids by living ring-opening polymerization of N-Substituted N-Carboxyanhydrides from solid supports. Macromol. Rapid Commun. 34:997–1001. doi:10.1002/marc.201300269
  • Zhang, D., S. H. Lahasky, L. Guo, C.-U. Lee, and M. Lavan. 2012. Polypeptoid materials: current status and future perspectives. Macromolecules 45:5833–5841. doi:10.1021/ma202319g
  • Robertson, E. J., A. Battigelli, C. Proulx, R. V. Mannige, T. K. Haxton, L. Yun, S. Whitelam, and R. N. Zuckermann. 2016. Design, synthesis, assembly, and engineering of peptoid nanosheets. Acc. Chem. Res. 49:379–389. doi:10.1021/acs.accounts.5b00439
  • Deming, T. J. 1999. Cobalt and iron initiators for the controlled polymerization of alpha-amino acid-N-carboxyanhydrides. Macromolecules 32:4500–4502. doi:10.1021/ma9902899
  • Zhao, W., Y. Gnanou, and N. Hadjichristidis. 2015. Organocatalysis by hydrogen-bonding: a new approach to controlled/living polymerization of alpha-amino acid N-carboxyanhydrides. Polym. Chem. 6:6193–6201. doi:10.1039/C5PY00874C
  • Zhao, W., Y. Lv, J. Li, Z. Feng, Y. Ni, and N. Hadjichristidis. 2019. Fast and selective organocatalytic ring-opening polymerization by fluorinated alcohol without a cocatalyst. Nat. Commun. 10:3590.
  • Liu, J., J. Xu, Z. Li, Y. Huang, H. Wang, Y. Gao, T. Guo, P. Ouyang, and K. Guo. 2017. Carbocation organocatalysis in interrupted povarov reactions to cis-fused pyrano-and furanobenzodihydropyrans. Eur. J. Org. Chem. 2017:3996–4003. doi:10.1002/ejoc.201700634
  • Wu, W., S. Cui, Z. Li, J. Liu, H. Wang, X. Wang, Q. Zhang, H. Wu, and K. Guo. 2015. Mild bronsted acid initiated controlled polymerizations of 2-oxazoline towards one-pot synthesis of novel double-hydrophilic poly(2-ethyl-2-oxazoline)-block-poly(sarcosine). Polym. Chem. 6:2970–2976. doi:10.1039/C5PY00256G
  • Jaffredo, C. G., J.-F. Carpentier, and S. M. Guillaume. 2012. Controlled ROP of β-butyrolactone simply mediated by amidine, guanidine, and phosphazene organocatalysts. Macromol. Rapid Commun. 33:1938–1944. doi:10.1002/marc.201200410
  • Lohmeijer, B. G. G., R. C. Pratt, F. Leibfarth, J. W. Logan, D. A. Long, A. P. Dove, F. Nederberg, J. Choi, C. Wade, R. M. Waymouth, and J. L. Hedrick. 2006. Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules 39:8574–8583. doi:10.1021/ma0619381
  • Chan, B. A., S. Xuan, M. Horton, and D. Zhang. 2016. 1,1,3,3-tetramethylguanidine-promoted ring-opening polymerization of N-butyl N-carboxyanhydride using alcohol initiators. Macromolecules 49:2002–2012. doi:10.1021/acs.macromol.5b02520
  • Wang, X., S. Cui, Z. Li, S. Kan, Q. Zhang, C. Zhao, H. Wu, J. Liu, W. Wu, and K. Guo. 2014. A base-conjugate-acid pair for living/controlled ring-opening polymerization of trimethylene carbonate through hydrogen-bonding bifunctional synergistic catalysis. Polym. Chem. 5:6051–6059. doi:10.1039/C4PY00773E
  • Povie, G., L. Ford, D. Pozzi, V. Soulard, G. Villa, and P. Renaud. 2016. Catechols as sources of hydrogen atoms in radical deiodination and related reactions. Angew. Chem. Int. Ed. Engl. 55:11221–11225. doi:10.1002/anie.201604950
  • Brzezinski, B., P. Radziejewski, A. Rabold, and G. Zundel. 1995. Hydrogen bonds and hydrogen-bonded systems in mannich bases of 2,2′-biphenol: an FTIR study of the proton polarizability and fermi resonance effects as a function of temperature. J. Mol. Struct. 355:185–191. doi:10.1016/0022-2860(95)08874-U
  • Steenken, S., and P. Neta. 1979. Electron transfer rates and equilibria between substituted phenoxide ions and phenoxy radicals. J. Phys. Chem. 83:1134–1137. doi:10.1021/j100472a005
  • Musialik, M., R. Kuzmicz, T. S. Pawłowski, and G. Litwinienko. 2009. Acidity of hydroxyl groups: an overlooked influence on antiradical properties of flavonoids. J. Org. Chem. 74:2699–2709. doi:10.1021/jo802716v
  • Foti, M. C., L. R. C. Barclay, and K. U. Ingold. 2002. The role of hydrogen bonding on the H-atom-donating abilities of catechols and naphthalene diols and on a previously overlooked aspect of their infrared spectra. J. Am. Chem. Soc. 124:12881–12888. doi:10.1021/ja020757l
  • Abraham, M. H., P. L. Grellier, D. V. Prior, P. P. Duce, J. J. Morris, and P. J. Taylor. 1989. Hydrogen bonding. Part 7. A scale of solute hydrogen-bond acidity based on log K values for complexation in tetrachloromethane. J. Chem. Soc, Perkin Trans. 2:699–711. doi:10.1039/p29890000699
  • Warren, J. J., T. A. Tronic, and J. M. Mayer. 2010. Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem. Rev. 110:6961–7001. doi:10.1021/cr100085k
  • Ishikawa, T. 2009. Superbases for Organic Synthesis Guanidines, Amidines and Phosphazenes and Related Organocatalysts. Hoboken, NJ, USA: John Wiley & Sons, Ltd.
  • Lin, Q., Q. Li, C. Batchelor-McAuley, and R. G. Compton. 2015. Two-electron, two-proton oxidation of catechol: kinetics and apparent catalysis. J. Phys. Chem. C. 119:1489–1495. doi:10.1021/jp511414b
  • Altmann, H. J., S. Naumann, and M. R. Buchmeiser. 2017. Protected N-heterocyclic carbenes as latent organocatalysts for the low-temperature curing of anhydride-hardened epoxy resins. Eur. Polym. J. 95:766–774.
  • Basterretxea, A., Y. Haga, A. Sanchez-Sanchez, M. Isik, L. Irusta, M. Tanaka, K. Fukushima, and H. Sardon. 2016. Biocompatibility and hemocompatibility evaluation of polyether urethanes synthesized using DBU organocatalyst. Eur. Polym. J. 84:750–758. doi:10.1016/j.eurpolymj.2016.08.008
  • Haynes, W. M. (ed.). 2014. CRC Handbook of Chemistry and Physics. 95th Edition. Boca Raton, FL: CRC Press LLC.
  • Baba, T., T. Matsui, K. Kamiya, M. Nakano, and Y. Shigeta. 2014. A density functional study on the pKa of small polyprotic molecules. Int. J. Quantum Chem. 114:1128–1134. doi:10.1002/qua.24631
  • Dimitrov, I., and H. Schlaad. 2003. Synthesis of nearly monodisperse polystyrene-polypeptide block copolymers via polymerisation of N-carboxyanhydrides. Chem. Commun. 23:2944–2945. doi:10.1039/B308990H
  • Tao, X., B. Zheng, T. Bai, B. Zhu, and J. Ling. 2017. Hydroxyl group tolerated polymerization of N-Substituted glycine N-Thiocarboxyanhydride mediated by aminoalcohols: a simple way to alpha-hydroxyl-omega-aminotelechelic polypeptoids. Macromolecules 50:3066–3077. doi:10.1021/acs.macromol.7b00309
  • Vacogne, C. D., and H. Schlaad. 2015. Primary ammonium/tertiary amine-mediated controlled ring opening polymerisation of amino acid N-carboxyanhydrides. Chem. Commun. 51:15645–15648. doi:10.1039/C5CC06905J
  • Zhang, Q., G. Nurumbetov, A. Simula, C. Zhu, M. Li, P. Wilson, K. Kempe, B. Yang, L. Tao, and D. M. Haddleton. 2016. Synthesis of well-defined catechol polymers for surface functionalization of magnetic nanoparticles. Polym. Chem. 7:7002–7010. doi:10.1039/C6PY01709F
  • Guo, L., S. H. Lahasky, K. Ghale, and D. Zhang. 2012. N-heterocyclic carbene-mediated zwitterionic polymerization of N-substituted N-carboxyanhydrides toward poly(α-peptoid)s: kinetic, mechanism, and architectural control. J. Am. Chem. Soc. 134:9163–9171. doi:10.1021/ja210842b
  • Brzezinski, B., and G. Zundel. 1996. Formation of hydrogen-bonded chains between a strong base with guanidine-like character and phenols with various pKa values-an FT-IR study. J. Mol. Struct. 380:195–204. doi:10.1016/0022-2860(96)09221-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.