369
Views
5
CrossRef citations to date
0
Altmetric
Articles

Viscoelasticity, mechanical properties, and in vivo biocompatibility of injectable polyvinyl alcohol/bioactive glass composite hydrogels as potential bone tissue scaffolds

ORCID Icon, , , &
Pages 362-373 | Received 14 Mar 2020, Accepted 29 Jun 2020, Published online: 13 Jul 2020

References

  • Sivashanmugam, A., R. A. Kumar, M. V. Priya, S. V. Nair, and R. Jayakumar. 2015. An overview of injectable polymeric hydrogels for tissue engineering. Eur. Polym. J. 72:543–565.
  • Zhang, Y., X. Li, N. Zhong, Y. Huang, K. He, and X. Ye. 2019. Injectable in situ dual-crosslinking hyaluronic acid and sodium alginate based hydrogels for drug release. J. Biomater. Sci. Polym. Ed. 30:995–1007.
  • Kaviani, A., S. M. Zebarjad, S. Javadpour, M. Ayatollahi, and R. Bazargan-Lari. 2019. Fabrication and characterization of low-cost freeze-gelated chitosan/collagen/hydroxyapatite hydrogel nanocomposite scaffold. Int. J. Polym. Anal. Charact. 24:191–203.
  • Liu, W., J. Zhan, Y. Su, T. Wu, S. Ramakrishna, S. Liao, and X. Mo. 2014. Injectable hydrogel incorporating with nanoyarn for bone regeneration. J. Biomater. Sci. Polym. Ed. 25:168–180.
  • Gantar, A., N. Drnovšek, P. Casuso, A. Pérez-San Vicente, J. Rodriguez, D. Dupin, S. Novak, and I. Loinaz. 2016. Injectable and self-healing dynamic hydrogel containing bioactive glass nanoparticles as a potential biomaterial for bone regeneration. RSC Adv. 6:69156–69166.
  • Van Vlierberghe, S., P. Dubruel, and E. Schacht. 2011. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408.
  • El-Fattah, A. A., and A. Mansour. 2018. Viscoelasticity, mechanical properties, and in vitro biodegradation of injectable chitosan-poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/nanohydroxyapatite composite hydrogel. Bull. Mater. Sci. 41:141.
  • Hennink, W. E., and C. F. van Nostrum. 2012. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 64:223–236.
  • Buwalda, S. J., K. W. Boere, P. J. Dijkstra, J. Feijen, T. Vermonden, and W. E. Hennink. 2014. Hydrogels in a historical perspective: from simple networks to smart materials. J. Control Rel. 190:254–273.
  • Nguyen, M. K., and D. S. Lee. 2010. Injectable biodegradable hydrogels. Macromol. Biosci. 10:563–579.
  • Peng, Z., and Y. Shen. 2011. Study on biological safety of polyvinyl alcohol/collagen hydrogel as tissue substitute (I). Polym. Plast. Technol. Eng. 50:245–250.
  • Manikandan, K. M., A. Yelilarasi, P. Senthamaraikannan, S. S. Saravanakumar, A. Khan, and A. M. Asiri. 2019. A green-nanocomposite film based on poly (vinyl alcohol)/eleusine coracana: structural, thermal, and morphological properties. Int. J. Polym. Anal. Charact. 24:257–265.
  • Kumar, A., and S. S. Han. 2017. PVA-based hydrogels for tissue engineering: a review. Int. J. Polym. Mater. 66:159–182.
  • Lan, W., X. Zhang, M. Xu, L. Zhao, D. Huang, X. Wei, and W. Chen. 2019. Carbon nanotube reinforced polyvinyl alcohol/biphasic calcium phosphate scaffold for bone tissue engineering. RSC Adv. 9:38998–39010.
  • Bai, X., M. Gao, S. Syed, J. Zhuang, X. Xu, and X. Q. Zhang. 2018. Bioactive hydrogels for bone regeneration. Bioact. Mater. 3:401–417.
  • Killion, J. A., S. Kehoe, L. M. Geever, D. M. Devine, E. Sheehan, D. Boyd, and C. L. Higginbotham. 2013. Hydrogel/bioactive glass composites for bone regeneration applications: synthesis and characterisation. Mater. Sci. Eng. C Mater. Biol. Appl. 33:4203–4212.
  • Sun, F., H. Zhou, and J. Lee. 2011. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater. 7:3813–3828.
  • Zhang, D., J. Duan, D. Wang, and S. Ge. 2010. Effect of preparation methods on mechanical properties of PVA/HA composite hydrogel. J. Bionic Eng. 7:235–243.
  • Shankhwar, N., M. Kumar, B. B. Mandal, and A. Srinivasan. 2016. Novel polyvinyl alcohol-bioglass 45S5 based composite nanofibrous membranes as bone scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 69:1167–1174.
  • Spaniol, K. G., S. C. Caldas, A. P. S. Peres, E. A. Dos Santos, and W. Acchar. 2019. β-TCP/PVA sheets crosslinked with citric acid produced via aqueous tape casting for bone regeneration. Ceram. Int. 45:12417–12422.
  • Gerhardt, L. C., and A. R. Boccaccini. 2010. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3:3867–3910.
  • Tang, Y., L. Pang, and D. Wang. 2017. Preparation and characterization of borate bioactive glass cross-linked PVA hydrogel. J. Non-Cryst. Solids 476:25–29.
  • Pereira, M. M., J. R. Jones, and L. L. Hench. 2005. Bioactive glass and hybrid scaffolds prepared by sol–gel method for bone tissue engineering. Adv. Appl. Ceram. 104:35–42.
  • Costa, H. S., M. F. Rocha, G. I. Andrade, E. F. Barbosa-Stancioli, M. M. Pereira, R. L. Orefice, W. L. Vasconcelos, and H. S. Mansur. 2008. Sol–gel derived composite from bioactive glass–polyvinyl alcohol. J. Mater. Sci. 43:494–502.
  • Lei, B., X. Chen, and Y. H. Koh. 2011. Effects of acidic catalysts on the microstructure and biological property of sol–gel bioactive glass microspheres. J. Sol-Gel Sci. Technol. 58:656–663.
  • Timofejeva, A., M. D’Este, and D. Loca. 2017. Calcium phosphate/polyvinyl alcohol composite hydrogels: a review on the freeze-thawing synthesis approach and applications in regenerative medicine. Eur. Polym. J. 95:547–565.
  • Srinivasan, S., R. Jayasree, K. P. Chennazhi, S. V. Nair, and R. Jayakumar. 2012. Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydr. Polym. 87:274–283.
  • Hong, Z., R. L. Reis, and J. F. Mano. 2008. Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomater. 4:1297–1306.
  • Labbaf, S., O. Tsigkou, K. H. Müller, M. M. Stevens, A. E. Porter, and J. R. Jones. 2011. Spherical bioactive glass particles and their interaction with human mesenchymal stem cells in vitro. Biomaterials 32:1010–1018.
  • Arun Kumar, R., A. Sivashanmugam, S. Deepthi, S. Iseki, K. P. Chennazhi, S. V. Nair, and R. Jayakumar. 2015. Injectable chitin-poly(ε-caprolactone)/nanohydroxyapatite composite microgels prepared by simple regeneration technique for bone tissue engineering. ACS Appl. Mater. Interfaces 7:9399–9409.
  • Nooeaid, P., J. A. Roether, E. Weber, D. W. Schubert, and A. R. Boccaccini. 2014. Technologies for multilayered scaffolds suitable for interface tissue engineering. Adv. Eng. Mater. 16:319–327.
  • Baino, F., G. Novajra, V. Miguez-Pacheco, A. R. Boccaccini, and C. Vitale-Brovarone. 2016. Bioactive glasses: special applications outside the skeletal system. J. Non-Cryst. Solids 432:15–30.
  • Xu, H., Y. Wang, Y. Zheng, X. Chen, L. Ren, G. Wu, and X. Huang. 2007. Preparation and characterization of bioglass/polyvinyl alcohol composite hydrogel. Biomed. Mater. 2:62–66.
  • Kumar, P. S., S. Srinivasan, V. K. Lakshmanan, H. Tamura, S. V. Nair, and R. Jayakumar. 2011. Synthesis, characterization and cytocompatibility studies of α-chitin hydrogel/nano hydroxyapatite composite scaffolds. Int. J. Biol. Macromol. 49:20–31.
  • Owens, G. J., R. K. Singh, F. Foroutan, M. Alqaysi, C. M. Han, C. Mahapatra, H. W. Kim, and J. C. Knowles. 2016. Sol–gel based materials for biomedical applications. Prog. Mater. Sci. 77:1–79.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.