185
Views
3
CrossRef citations to date
0
Altmetric
Articles

Thermal stability and dynamic mechanical thermal analysis of epoxy thermosets possessing N,N′-disubstituted pyromellitimide units

, ORCID Icon &
Pages 444-456 | Received 09 Apr 2020, Accepted 30 Jul 2020, Published online: 18 Aug 2020

References

  • Gu, H., C. Ma, J. Gu, J. Guo, X. Yan, J. Huang, Q. Zhang, and Z. Guo. 2016. An overview of multifunctional epoxy nanocomposites. J. Mater. Chem. C 4:5890–5906. ‏ doi:10.1039/C6TC01210H
  • Jin, F., X. Li, and S. J. Park. 2015. Synthesis and application of epoxy resins: a review. J. Ind. Eng. Chem. 29:1–11. ‏ doi:10.1016/j.jiec.2015.03.026
  • Xiang, Q., and F. Xiao. 2020. Applications of epoxy materials in pavement engineering. Constr. Build. Mater. 235:117529. ‏ doi:10.1016/j.conbuildmat.2019.117529
  • Mohammed, L., M. N. M. Ansari, G. Pua, M. Jawaid, and M. S. Islam. 2015. A review on natural fiber reinforced polymer composite and its applications. Int. J. Polym. Sci. 2015:1–15. ‏ doi:10.1155/2015/243947
  • Yi-Le, X., A. Q. Dayo, J. Wang, A. Wang, D. Lv, A. Zegaoui, M. Derradji, and W. Liu. 2018. Mechanical and thermal properties of a room temperature curing epoxy resin and related hemp fibers reinforced composites using a novel in-situ generated curing agent. Mater. Chem. Phys. 203:293–301. ‏ doi:10.1016/j.matchemphys.2017.10.004
  • Park, S., and D. S. Kim. 2016. Curing behavior and physical properties of an epoxy nanocomposite with amine-functionalized graphene nanoplatelets. Compos. Interfaces 23:675–687. ‏ doi:10.1080/09276440.2016.1168632
  • Feng, Y., C. He, Y. Wen, Y. Ye, X. Zhou, X. Xie, and Y. W. Mai. 2017. Improving thermal and flame-retardant properties of epoxy resin by functionalized graphene containing phosphorous, nitrogen and silicon elements. Compos. A 103:74–83. ‏ doi:10.1016/j.compositesa.2017.09.014
  • Kumar, S., S. Krishnan, S. K. Samal, S. Mohanty, and S. K. Nayak. 2018. Toughening of petroleum based (DGEBA) epoxy resins with various renewable resources based flexible chains for high performance applications: a review. Ind. Eng. Chem. Res. 57:2711–2726. ‏ doi:10.1021/acs.iecr.7b04495
  • Kommula, V. P., K. O. Reddy, M. Shukla, T. Marwala, and A. V. Rajulu. 2014. Mechanical properties, water absorption, and chemical resistance of napier grass fiber strand–reinforced epoxy resin composites. Int. J. Polym. Anal. Charact. 19:693–708. ‏ doi:10.1080/1023666X.2014.954186
  • Krakovsky, I., Szekely  , and N. K. Szekely. 2016. SANS study on the surfactant effect on nanophase separation in epoxy-based hydrogels prepared from α, ω-diamino terminated polyoxypropylene and polyoxyethylene bis (glycidyl ether). Eur. Polym. J. 85:452–465. ‏
  • Krakovský, I., J. C. Cayuela, R. Sabater I Serra, M. Salmerón-Sánchez, and J. M. Dodda. 2014. Epoxy networks and thermosensitive hydrogels prepared from α, ω-diamino terminated polyoxypropylene and polyoxyethylene bis (glycidyl ether). Eur. Polym. J. 55:144–152. doi:10.1016/j.eurpolymj.2014.03.032
  • Mushtaq, N., Q. Wang, G. Chen, B. Bashir, H. Lao, Y. Zhang, L. R. Sidra, and X. Fang. 2020. Synthesis of polyamide-imides with different monomer sequence and effect on transparency and thermal properties. Polymer 190:122218. doi:10.1016/j.polymer.2020.122218
  • Ma, K., G. Chen, W. Wang, A. Zhang, Y. Zhong, Y. Zhang, and X. Fang. 2018. Partially bio‐based aromatic polyimides derived from 2,5‐furandicarboxylic acid with high thermal and mechanical properties. J. Polym. Sci. A Polym. Chem. 56:1058–1066. doi:10.1002/pola.28982
  • Song, G., C. Chen, X. Wang, and J. Yao. 2019. Synthesis and properties of polyimides derived from 2,2′-dichloro-4,4′,5,5′-biphenyltetracarboxylic dianhydride. Polymer 183:121862. doi:10.1016/j.polymer.2019.121862
  • Xu, R., D. Meng, H. Sun, J. Zhou, S. Cheng, and Z. Li. 2019. Synthesis and properties of cycloaliphatic epoxy resins containing imide and diphenyl sulfone. High Perform. Polym. 31:380–387. ‏ doi:10.1177/0954008318774822
  • Kolcu, F., S. Çulhaoğlu, and İ. Kaya. 2019. Synthesis, optical and electrochemical abilities of highly soluble poly (epoxy-ether)s bearing perylene bisimide units and their enhanced thermal properties by curing process. Prog. Org. Coat. 137:105284. ‏ doi:10.1016/j.porgcoat.2019.105284
  • Ren, H., J. Sun, Q. Zhao, Q. Zhou, and Q. Ling. 2008. Synthesis and characterization of a novel heat resistant epoxy resin based on N, N′-bis (5-hydroxy-1-naphthyl) pyromellitic diimide. Polymer 49:5249–5253. ‏ doi:10.1016/j.polymer.2008.09.047
  • Sharma, P., V. Choudhary, and A. K. Narula. 2008. Curing and thermal behaviour of epoxy resin in the presence of a mixture of imide-amines. J. Therm. Anal. Calorim. 94:805–815. ‏ doi:10.1007/s10973-007-8982-y
  • Ahmadi-Khaneghah, A.,. M. Omidi-Ghallemohamadi, and H. Behniafar. 2019. PEG-based epoxy and epoxy/silica networks: thermal, mechanical, and thermo-mechanical investigations. Int. J. Adhes. Adhes. 95:102430. ‏ doi:10.1016/j.ijadhadh.2019.102430
  • Jafari-Soghieh, F., E. Pajoohi-Alamooti, and H. Behniafar. 2019. Bisphenol a diglycidyl ether-based epoxy networks with enhanced storage moduli using silica nanoparticles coated by NH2-functionalized poly(tetramethylene oxide). Polym. Sci. Ser. A 61:357–365. ‏ doi:10.1134/S0965545X19030155
  • Jafari-Soghieh, F., B. Maleki, and H. Behniafar. 2019. Effect of dendrimer-functionalized magnetic iron oxide nanoparticles on improving thermal and mechanical properties of DGEBA/IPD epoxy networks. High Perform. Polym. 31:24–31. ‏ doi:10.1177/0954008317749020
  • Malekshahinezhad, K., A. Ahmadi-Khaneghah, and H. Behniafar. 2020. Amine-functionalized TiO2 nanoparticles covalently loaded into epoxy networks via thermal and microwave curing processes. Macromol. Res. 28:567–566. ‏ doi:10.1007/s13233-020-8067-3
  • Jafari-Soghieh, F., and H. Behniafar. 2019. Epoxy networks cured with α,ω-diamino polyoxytetramethylene in the presence of polyoxytetramethylene-coated silica nanoparticles. pk. 43:52–59. ‏‏ doi:10.7317/pk.2019.43.1.52
  • Behniafar, H., and M. K. Nazemi. 2017. Effect of amine-functionalized silica nanoparticles on thermal and mechanical behaviors of DGEBA/IPD epoxy networks. Polym. Bull. 74:3739–3749. ‏ doi:10.1007/s00289-017-1928-z
  • Naeemikhah, E., A. Ahmadi-Khaneghah, Z. Shamsi-Jamkhaneh, and H. Behniafar. 2020. Curing processes of binary epoxy-amine systems for manufacturing epoxy-silica films. Mater. Manuf. Processes. 35:978–984. doi:10.1080/10426914.2020.1750632.‏
  • Omidi-Ghallemohamadi, M., A. Ahmadi-Khaneghah, and H. Behniafar. 2019. Epoxy networks possessing polyoxyethylene unites and loaded by jeffamine-modified graphene oxide nanoplatelets. Prog. Org. Coat. 134:264–271. doi:10.1016/j.porgcoat.2019.05.014
  • Darroman, E., N. Durand, B. Boutevin, and S. Caillol. 2016. Improved cardanol derived epoxy coatings. Prog. Org. Coat. 91:9–16. doi:10.1016/j.porgcoat.2015.11.012
  • Huo, S., J. Wang, S. Yang, C. Li, X. Wang, and H. Cai. 2019. Synthesis of a DOPO-containing imidazole curing agent and its application in reactive flame retarded epoxy resin. Polym. Deg. Stabil. 159:79–89. doi:10.1016/j.polymdegradstab.2018.11.021
  • ‏Sheinbaum, L., M. Sheinbaum, O. Weizman, H. Dodiuk, S. Dichter, and S. Kenig. 2019. Toughening of epoxy systems by brominated epoxy. Polym. Eng. Sci. 59:206–215. doi:10.1002/pen.24890

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.