128
Views
0
CrossRef citations to date
0
Altmetric
Articles

Research on temperature field during the hot pressing process of UHMWPE-based water-lubricated bearing

, , , , , & show all
Pages 1-11 | Received 07 May 2022, Accepted 16 Oct 2022, Published online: 27 Oct 2022

References

  • Kirchner, S., and P. Kleemola-Juntunen. 2018. Dumping and oil pollution: Regulatory approaches for vessel operations in an ice‐free Central Arctic Ocean. Reciel. 27:28–34.
  • Wz, A., B. Cl, D. Jcc., et al. 2021. Governance of global vessel-source marine oil spills: characteristics and refreshed strategies. ]. Ocean Coast. Manage. 213:105874.
  • Ytreberg, E., S. Åström, and E. Fridell. 2021. Valuating environmental impacts from ship emissions –the marine perspective. J. Environ. Manage. 282:111958.
  • Qu, C., T. Wang, Q. Wang, and S. Chen. 2022. A novel ternary interpenetrating polymer networks based on NBR/PU/EP with outstanding damping and tribological properties for water-lubricated bearings. Tribol. Int. 167:107249.
  • Shankar, R., J.-H. Jung, A. Loh, J. G. An, S. Y. Ha, and U. H. Yim. 2020. Environmental significance of lubricant oil: a systematic study of photooxidation and its consequences. Water Res. 168:115183.
  • Dhakal, N., Y. Shi, and N. Emami. 2022. Tribological behaviour of UHMWPE composites lubricated by polyvinylpyrrolidone‐modified water. Lubric. Sci. 34:42–53.
  • Litwin, W. 2011. Influence of surface roughness topography on properties of water-lubricated polymer bearings: experimental research. Tribol. Transact. 54:351–361.
  • Wang, C., X. Bai, Z. Guo, C. Dong, and C. Yuan. 2021. A strategy that combines a hydrogel and graphene oxide to improve the water-lubricated performance of ultrahigh molecular weight polyethylene. Composit. Part A Appl. Sci. Manufact. 141:106207.
  • Lin, C.-G., M.-S. Zou, H.-C. Zhang, L.-B. Qi, and S.-X. Liu. 2021. Influence of different parameters on nonlinear friction-induced vibration characteristics of water lubricated stern bearings. Int. J. Naval Architect. Ocean Eng. 13:746–757.
  • Guo, Z., Q. Huang, X. Xie, and C. Yuan. 2021. Effects of spherical-platform texture parameters on the tribological performance of water-lubricated bearings. Wear. 477:203863.
  • Nijssen, J. P. A., J. Faludi, and R. A. J. van Ostayen. 2021. An eco-impact design metric for water lubricated bearings based on anticipatory life cycle assessment. J. Clean. Prod. 321:128874.
  • Wu, Z., C. Sheng, Z. Guo, Y. Li, R. Malekian, and Z. Li. 2018. Surface texture processing for tribological performance improvement of UHMWPE-based water-lubricated bearings. ILT. 70:1341–1349.
  • Ünlü, B. S. 2009. Investigation of tribological and mechanical properties of metal bearings. Bull. Mater. Sci. 32:451–457.
  • Tamboli, K., and K. Athre. 2016. Experimental investigations on water lubricated hydrodynamic bearing. Procedia Technol. 23:68–75.
  • Ginzburg, B. M., D. G. Tochil’nikov, V. E. Bakhareva, A. V. Anisimov, and O. F. Kireenko. 2006. Polymeric materials for water-lubricated plain bearings. Russ. J. Appl. Chem. 79:695–706.
  • Golchin, A., K. Friedrich, A. Noll, and B. Prakash. 2015. Tribological behavior of carbon-filled PPS composites in water lubricated contacts. Wear. 328–329:456–463.
  • Friedrich, K. 2018. Polymer composites for tribological applications. Adv. Indust. Eng. Polym. Res. 1:3–39.
  • Gong, H., C. Yu, L. Zhang, G. Xie, D. Guo, and J. Luo. 2020. Intelligent lubricating materials: a review. Composit. Part B Eng. 202:108450.
  • Somberg, J., P. Saravanan, H. S. Vadivel, K. Berglund, Y. Shi, J. Ukonsaari, and N. Emami. 2021. Tribological characterisation of polymer composites for hydropower bearings: Experimentally developed versus commercial materials. Tribol. Int. 162:107101.
  • Kornopol’tsev, V. N., D. M. Mognonov, I. A. Farion, V. E. Nikitin, and V. A. Zakharov. 2009. Use of ultrahigh-molecular-weight polyethylene for bearing materials on a steel substrate. J. Frict. Wear. 30:58–61.
  • Mimaroglu, A., and H. Unal. 2015. Investigation of the water lubricated tribological behavior of medical grade UHMWPE. Adv. Mater. Process. Technol. 1:109–114.
  • Chang, T., Yuan, C., and Guo, Z. 2019. Tribological behavior of aged UHMWPE under water-lubricated condition. Tribol. Int. 133:1–11.
  • Chen, S., J. Li, L. Wei, Y. Jin, H. Shang, M. Hua, and H. Duan. 2017. Tribological properties of polyimide-modified UHMWPE for bushing materials of seawater lubricated sliding bearings. Tribol. Int. 115:470–476.
  • Chen, S., L. Wei, B. Cheng, Y. Jin, C. Li, D. Jia, and H. Duan. 2020. Dry sliding tribological properties of PI/UHMWPE blends for high speed application. Tribol. Int. 146:106262.
  • Edwards, K. L. 1998. A designers’ guide to engineering polymer technology. Mater. Des. 19:57–67.
  • Das, A., C. A. Chatham, J. J. Fallon, C. E. Zawaski, E. L. Gilmer, C. B. Williams, and M. J. Bortner. 2020. Current understanding and challenges in high temperature additive manufacturing of engineering thermoplastic polymers. Addit. Manuf. 34:101218.
  • Sukiman, M. S., F. Erchiqui, T. Kanit, and A. Imad. 2020. Design and numerical modeling of the thermoforming process of a WPC based formwork structure. Mater. Today Commun. 22:100805.
  • Sun, J., D. Wu, Y. Liu, L. Dai, and C. Jiang. 2018. Numerical simulation and experimental study of filling process of micro prism by isothermal hot embossing in solid‐like state. Adv. Polym. Technol. 37:1581–1591.
  • Parasnis, N. C., and K. Ramani. 1998. Analysis of the effect of pressure on compression moulding of UHMWPE. J. Mater. Sci. Mater. Med. 9:165–172.
  • Endo, M. M., P. S. Barbour, D. C. Barton, B. M. Wroblewski, J. Fisher, J. L. Tipper, E. Ingham, and M. H. Stone. 1999. A comparison of the wear and debris generation of GUR 1120 (compression moulded) and GUR 4150HP (ram extruded) ultra-high molecular weight polyethylene. Biomed. Mater. Eng. 9:113–124.
  • Truss, R. W., K. S. Han, J. F. Wallace, and P. H. Geil. 1980. Cold compaction molding and sintering of ultra-high molecular weight polyethylene. Polym. Eng. Sci. 20:747–755.
  • Ferreira, A. E., M. R. Ribeiro, H. Cramail, J. P. Lourenço, V. Lorenzo, E. Pérez, and M. L. Cerrada. 2019. Extraordinary mechanical performance in disentangled UHMWPE films processed by compression molding. J Mech Behav Biomed Mater 90:202–207.
  • Wu, J. J., C. P. Buckley, and J. J. O'Connor. 2002. Mechanical integrity of compression-moulded ultra-high molecular weight polyethylene: effects of varying process conditions. Biomaterials. 23:3773–3783.
  • Hu, S., Y. Feng, X. Yin, X. Zou, and J. Qu. 2021. Structure and properties of UHMWPE products strengthened and toughened by pulse vibration molding at low temperature. Polymer. 229:124026.
  • Zheng, Z., X. Huang, Y. Li, N. Yang, X. Wang, and M. Shi. 2012. Influence factors of internal structure and interfacial compatibility of UHMWPE fiber/SEBS resin composites: processing parameters, structure of fiber and nature of resin. Composit. Part B Eng. 43:1538–1544.
  • Yu, C.-N., H.-C. Zhang, S.-X. Su, and Y. Liang. 2021. Dynamic rheological behavior, crystallization and friction performance of ultrahigh molecular weight polyethylene/polypropylene blends by multi-step melt processing strategy. J. Mater. Res. Technol. 15:6747–6757.
  • Sánchez-Sánchez, X., A. Elias-Zuñiga, and M. Hernández-Avila. 2018. Processing of ultra-high molecular weight polyethylene/graphite composites by ultrasonic injection moulding: Taguchi optimization. Ultrason. Sonochem. 44:350–358.
  • Lumay, G., F. Francqui, C. Detrembleur, and N. Vandewalle. 2020. Influence of temperature on the packing dynamics of polymer powders. Adv. Powd. Technol. 31:4428–4435.
  • Belotti, L. P., H. S. Vadivel, and N. Emami. 2019. Tribological performance of hygrothermally aged UHMWPE hybrid composites. Tribol. Int. 138:150–156.
  • Zeng, Z., B. Guo, M. Li, J. Li, and X. D. Zhou. 2018. Experimental and simulated investigation of temperature distribution of UHMWPE laminated composites during hot pressing process. J. Appl. Polym. Sci. 135:45874.
  • Cheng, B., H. Duan, S. Chen, H. Shang, J. Li, and T. Shao. 2021. Effects of thermal aging on the blend phase morphology and tribological performance of PI/UHMWPE blend composites. Wear. 477:203840.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.