136
Views
1
CrossRef citations to date
0
Altmetric
Articles

Dense, porous, and fibrous scaffolds composed of PHBV, PCL, and their 75:25 blend: an in vitro morphological and cytochemical characterization

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 73-87 | Received 23 Apr 2022, Accepted 13 Nov 2022, Published online: 21 Nov 2022

References

  • Edgar, L., T. Pu, B. Porter, J. M. Aziz, C. L. Pointe, A. Asthana, and G. Orlando. 2020. Regenerative medicine, organ bioengineering and transplantation. Br. J. Surg. 107:793–800. doi:10.1002/bjs.11686
  • Madl, C. M., S. C. Heilshorn, and H. M. Blau. 2018. Bioengineering strategies to accelerate stem cell therapeutics. Nature 557:335–342. doi:10.1038/s41586-018-0089-z
  • Langer, R., and J. P. Vacanti. 1993. Tissue engineering. Science 260:920–926. doi:10.1126/science.8493529
  • Fisher, M. B., and R. L. Mauck. 2013. Tissue engineering and regenerative medicine: recent innovations and the transition to translation. Tissue Eng. Part B Rev. 19:1–13. doi:10.1089/ten.teb.2012.0723
  • Baudequin, T., and M. Tabrizian. 2018. Multilineage constructs for scaffold-based tissue engineering: a review of tissue-specific challenges. Adv. Healthcare Mater. 7:1700734. doi:10.1002/adhm.201700734
  • O'Keefe, R. J., and J. Mao. 2011. Bone tissue engineering and regeneration: from discovery to the clinic – an overview. Tissue Eng. Part B Rev. 17:389–392. doi:10.1089/ten.teb.2011.0475
  • Sultana, N., and M. Wang. 2012. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Biofabrication 4:015003. doi:10.1088/1758-5082/4/1/015003
  • Elmowafy, E., A. Abdal-Hay, A. Skouras, M. Tiboni, L. Casettari, and V. Guarino. 2019. Polyhydroxyalkanoate (PHA): applications in drug delivery and tissue engineering. Expert Rev. Med. Dev. 16:467–482. doi:10.1080/17434440.2019.1615439
  • Rivera-Briso, A. L., and A. Serrano-Aroca. 2018. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate): enhancement strategies for advanced applications. Polymers 10:732. doi:10.3390/polym10070732
  • Köse, G. T., H. Kenar, N. Hasirci, and V. Hasirci. 2003. Macroporous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrices for bone tissue engineering. Biomaterials 24:1949–1958. doi:10.1016/S0142-9612(02)00613-0
  • Dias, M., M. C. M. Antunes, A. R. Santos Jr., and M. I. Felisberti. 2008. Blends of poly(3-hydroxybutyrate) and poly(p-dioxanone): miscibility, thermal stability and biocompatibility. J. Mater. Sci. Mater. Med. 19:3535–3544. doi:10.1007/s10856-008-3531-1
  • Rivera-Briso, A. L., F. Lillelund Aachmann, V. Moreno-Manzano, and A. Serrano-Aroca. 2020. Graphene oxide nanosheets versus carbon nanofibers: enhancement of physical and biological properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for biomedical applications. Int. J. Biol. Macromol. 143:1000–1008. doi:10.1016/j.ijbiomac.2019.10.034
  • Aparicio-Collado, J. L., J. J. Novoa, J. Molina-Mateo, C. Torregrosa-Cabanilles, A. Serrano-Aroca, and R. Sabater I Serra. 2020. Novel semi-interpenetrated polymer networks of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly (vinyl alcohol) with incorporated conductive polypyrrole nanoparticles. Polymers 13:57. doi:10.3390/polym13010057
  • Azimi, B., P. Nourpanah, M. Rabiee, and S. Arbab. 2014. Poly (ε-caprolactone) fiber: an overview. J. Eng. Fiber. Fabrics 9:155892501400900. doi:10.1177/155892501400900309
  • Siddiqui, N., S. Asawa, B. Birru, R. Baadhe, and S. Rao. 2018. PCL-Based composite scaffold matrices for tissue engineering applications. Mol. Biotechnol. 60:506–532. doi:10.1007/s12033-018-0084-5
  • Badrossamay, M. R., K. Balachandran, A. K. Capulli, H. N. Golecki, A. Agarwal, J. A. Goss, H. Kim, K. Shin, and K. K. Parker. 2014. Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning. Biomaterials 35:3188–3197. doi:10.1016/j.biomaterials.2013.12.072
  • Coombes, A. G. A., S. C. Rizzi, M. Williamson, J. E. Barralet, S. Downes, and W. A. Wallace. 2004. Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials 25:315–325. doi:10.1016/S0142-9612(03)00535-0
  • Pachence, J. M., M. P. Bohrer, and J. Kohn. 2007. Biodegradable polymers. In Principles of Tissue Engineering, 3rd ed., eds. R. Lanza, R. Langer, and J. P. Vacanti, pp. 323–339. Boston, MA: Elsevier.
  • Casarin, S. A., S. M. Malmonge, M. Kobayashi, and J. A. M. Agnelli. 2011. Study on in vitro degradation of bioabsorbable polymers poly(hydroxybutyrate-co-valerate) – (PHBV) and poly(caprolactone) – (PCL). JBNB 2:207–215. doi:10.4236/jbnb.2011.23026
  • Duan, B., and M. Wang. 2010. Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J. Royal Soc. Interface 7:S615–S629. doi:10.1098/rsif.2010.0127.focus
  • Baptista-Perianes, A., S. M. Malmonge, M. M. O. Simbara, and A. R. Santos Jr. 2019. In vitro evaluation of PHBV/PCL blends for bone tissue engineering. Mater. Res. 22:e20190338. doi:10.1590/1980-5373-MR-2019-0338
  • Iguma, T. S., S. M. Malmonge, and A. R. Santos Jr. 2019. Natural fibrous polymers for tissue engineering. Stem Cells Regen. Med. 3:1–10. https://www.scivisionpub.com/pdfs/natural-fibrous-polymers-for-tissue-engineering-973.pdf
  • Lu, L. X., Y. Y. Wang, X. Mao, Z. D. Xiao, and N. P. Huang. 2012. The effects of PHBV electrospun fibers with different diameters and orientations on growth behavior of bone-marrow derived mesenchymal stem cells. Biomed. Mater. 7:015002. doi:10.1088/1748-6041/7/1/015002
  • ASTM F813-83(1996)e1. 2001. Standard Practice for Direct Contact Cell Culture Evaluation of Materials for Medical Devices. West Conshohocken, PA: ASTM International. https://www.astm.org/f0813-07.html
  • ISO 10993-5. 2009. Biological Evaluation of Medical Devices – Part 5 – Tests for Cytotoxicity: In Vitro Methods. https://www.iso.org/obp/ui#iso:std:iso:10993:-5:ed-3:v1:en
  • Kirkpatrick, C. J. 1992. Biological testing of materials and medical devices – a critical view of current and proposed methodologies for biocompatibility testing: cytotoxicity in vitro. Reg. Affairs 4:13–32.
  • Lison, L. 1953. Histochimie et Cytochimie Animals – Principes et Methodes. Paris: Gauthier Villars.
  • Mello, M. L. S. 1997. Cytochemistry of DNA, RNA and nuclear proteins. Braz. J. Genet. 20:257–264.
  • Toboga, S. R., and P. S. L. Vilamaior. 2013. Citoquímica. In A Célula, 3ed., eds. H. F. Carvalho and S. M. Recco-Pimentel, pp. 60–68. Barueri: Manole.
  • Vidal, B. C., and M. L. S. Mello. 2019. Toluidine blue staining for cell and tissue biology applications. Acta Histochem. 121:101–112. doi:10.1016/j.acthis.2018.11.005
  • Ferreira, B. M. P., C. A. C. Zavaglia, and E. A. R. Duek. 2002. Films of PLLA/PHBV: Thermal, morphological, and mechanical characterization. J. Appl. Polym. Sci. 86:2898–2906. doi:10.1002/app.11334
  • Boyandin, A. N., E. D. Nikolaeva, and A. G. Sukovatiy. 2016. Properties and biocompatibility of poly-3-hydroxybutyrate-co-3-hydroxyvalerate/poly-ε-caprolactone blends. J. Sib. Fed. Univ. Biol. 9:63–74. doi:10.17516/1997-1389-2016-9-1-63-74
  • Liu, H., Z. Gao, X. Hu, Z. Wang, T. Su, L. Yang, and S. Yan. 2017. Blending modification of PHBV/PCL and its biodegradation by pseudomonas mendocina. J. Polym. Environ. 25:156–164. doi:10.1007/s10924-016-0795-2
  • Santos, A. R. Jr., B. M. P. Ferreira Jr., E. A. R. Duek, H. Dolder, and M. L. F. Wada. 2005. Bioabsorbable blends of poly (L-lactic acid)/poly (hydroxybutyrate-co-hydroxyvalerate) for cell culture. Braz. J. Med. Biol. Res. 38:1623–1632. doi:10.1590/S0100-879X2005001100009
  • Giorno, L. P., L. R. Rodrigues, and A. R. Santos Jr. 2022. Characterization and in vitro analysis of a poly(ε‐caprolactone)–gelatin matrix produced by rotary jet spinning and applied as a skin dressing. Polym. Bull. 79:9131–9158. doi:10.1007/s00289-022-04228-9
  • Lucchesi, C., B. M. P. Ferreira, E. A. R. Duek, A. R. Santos Jr., and P. P. Joazeiro. 2008. Increased response of vero cells to PHBV matrices treated by plasma. J. Mater. Sci. Mater. Med. 19:635–643. doi:10.1007/s10856-007-0169-3
  • Simbara, M. M. O., A. R. Santos Jr., A. J. P. Andrade, and S. M. Malmonge. 2019. Comparative study of aligned and nonaligned poly(ε-caprolactone) fibrous scaffolds prepared by solution blow spinning. J. Biomed. Mater. Res. B Appl. Biomater. 107:1462–1470. doi:10.1002/jbm.b.34238
  • Vida, T. A., A. C. Motta, A. R. Santos Jr., G. B. C. Cardoso, C. C. D Brito, and C. A. D C. Zavaglia. 2018. Fibrous PCL/PLLA scaffolds obtained by rotary jet spinning and electrospinning. Mat. Res. 20:910–916. doi:10.1590/1980-5373-MR-2016-0969
  • Almeida Neto, G. R., M. V. Barcelos, M. E. A. Ribeiro, M. M. Folly, and R. J. S. Rodríguez. 2019. Formulation and characterization of a novel PHBV nanocomposite for bone defect filling and infection treatment. Mater. Sci. Eng. C Mater. Biol. Appl. 104:110004. doi:10.1016/j.msec.2019.110004
  • Zhong, L., D. Hu, Y. Qu, J. Peng, K. Huang, MYi Lei, T. Wu, Y. Xiao, Y. Gu, and Z. Qian. 2019. Preparation of adenosine-loaded electrospun nanofibers and their application in bone regeneration. J. Biomed. Nanotechnol. 15:857–877. doi:10.1166/jbn.2019.2761
  • Esposito, A. R., C. Lucchesi, B. M. P. Ferreira, and E. A. R. Duek. 2007. Estudo da interação células vero/PLGA após a modificação da superfície por plasma de oxigênio. Matéria 12:164–172. doi:10.1590/S1517-70762007000100021
  • Santos, A. R. Jr., S. H. Barbanti Jr., E. A. R. Duek, and M. L. F. Wada. 2009. Analysis of the growth pattern of vero cells cultured on dense and porous poly(l-lactic acid) scaffolds. Mat. Res. 12:257–263. doi:10.1590/S1516-14392009000300002
  • de Andrade Pinto, S. A., F. J. De Nadai Dias, G. B. C. Cardoso, A. R. Santos Jr., A. A. de Aro, D. S. Pino, D. H. Meneghetti, R. P. Vitti, G. M. T. dos Santos, and C. A. C. Zavaglia. 2022. Polycaprolactone/beta-tricalcium phosphate scaffolds obtained via rotary jet-spinning: in vitro and in vivo evaluation. Cells Tissues Organs 211:21–35. doi:10.1159/000511570

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.