107
Views
0
CrossRef citations to date
0
Altmetric
Articles

Characterization and its curing behaviors of rigid phenolic foams based on cardanol

ORCID Icon, , , &
Pages 88-99 | Received 02 Jul 2022, Accepted 30 Nov 2022, Published online: 14 Dec 2022

References

  • Zhang, Y., S. Fu, C. Huang, L. Li, G. Li, and Q. Yan. 2004. Advances in thermosetting polymer-based nanocomposites. Acta Metallrugica Sinica. 40:833–840.
  • Xu, L., S. Yue, J. Hu, H. Zhang, and H. Chen. 2009. Curing behaviors and properties of ternary polymerization modified phenolic resin. J. Chem. Eng. Chinese Uni. 25:137–140. doi:10.16865/j.cnki.1000-7555.2009.12.038.
  • Kim, J. 2015. Production, separation and applications of phenolic-rich bio-oil-a review. Bioresour. Technol. 178:90–98.
  • Rao, G., I. Srikanth, and K. Reddy. 2021. Effect of organo-modified montmorillonite nanoclay on mechanical, thermal and ablation behavior of carbon fiber/phenolic resin composites. Defence Technol. 17:812–820.
  • Asim, M., N. Saba, M. Jawaid, M. Nasir, M. Pervaiz, and O. Alothman. 2018. A review on phenolic resin and its composites. CAC. 14:185–197.
  • Vázquez, G., G. Antorrena, J. González, and J. Mayor. 1995. Lignin-phenol-formaldehyde adhesives for exterior grade plywoods. Bioresour. Technol. 51:187–192.
  • Wang, M., M. Leitch, and C. Xu. (Charles). 2009. Synthesis of phenol-formaldehyde resol resins using organosolv pine lignins. Eur. Polym. J. 45:3380–3388. doi:10.1016/j.eurpolymj.2009.10.003.
  • Zhang, W., N. Jiang, and T. Zhang. 2021. Synthesis and properties of corresponding polymers of urushiol-based benzoxazine monomers modified by silane. Int. J. Polym. Anal. Charact. 26:265–276.
  • Bo, C., L. Hu, Y. Chen, X. Yang, M. Zhang, and Y. Zhou. 2018. Synthesis of a novel cardanol-based compound and environmentally sustainable production of phenolic foam. J. Mater. Sci. 53:10784–10797. doi:10.1007/s10853-018-2362-9.
  • Zhang, W., T. Zhang, N. Jiang, and T. Zhang. 2020. Synthesis of a bio-based internal plasticizer from cardanol and its evaluations. Int. J. Polym. Anal. Charact. 25:94–104.
  • Bloise, E., M. Becerra-Herrera, G. Mele, A. Sayago, L. Carbone, L. D’Accolti, S. E. Mazzetto, and G. Vasapollo. 2014. Sustainable preparation of cardanol-based nanocarriers with embedded natural phenolic compounds. ACS Sustainable Chem. Eng. 2:1299–1304. doi:10.1021/sc500123r.
  • Mohapatra, S., and G. B. Nando. 2014. Cardanol: a green substitute for aromatic oil as a plasticizer in natural rubber. Rsc Adv. 4:15406–15418. doi:10.1039/c3ra46061d.
  • Zhou, D., D. Liu, H. Wang, Y. Lian, and Y. Luo. 2011. Nonisothermal curing behaviors of novolac-type phenolic resins of varied ortho to Para ratios. Polymer-Plastics Technol. and Eng. 50:983–989. doi:10.1080/03602559.2011.553864.
  • Suresh, K. 2013. Rigid polyurethane foams from cardanol: synthesis, structural characterization, and evaluation of polyol and foam properties. ACS Sustainable Chem. Eng. 1:232–242. doi:10.1021/sc300079z.
  • Miyazaki, J., N. Furuta, and T. Miyauchi. 2013. Curing of phenol-formaldehyde resin mixed with wood preservatives. J. Appl. Polym. Sci. 128:2896–2901. doi:10.1002/app.38447.
  • Turunen, M., L. Alvila, T. Pakkanen, and J. Rainio. 2003. Modification of phenol-formaldehde- resol resins by lignin, starch, and urea. J. Appl. Polym. Sci. 88:582–588. doi: 10.1002/app.11776.
  • Alonso, M., M. Oliet, J. Domínguez, E. Rojo, and F. Rodríguez. 2011. Thermal degradation of lignin-phenol-formaldehyde and phenol-formaldehyde resol resins. J. Therm. Anal. Calorim. 105:349–356. doi:10.1007/s10973-011-1405-0.
  • Zhang, W., Y. Ma, C. Wang, S. Li, M. Zhang, and F. Chu. 2013. Preparation and properties of lignin-phenol-formaldehyde resins based on different biorefinery residues of agricultural biomass. Ind. Crops Prod. 43:326–333.
  • Matsushita, Y., S. Wada, K. Fukushima, and S. Yasuda. 2006. Surface characteristics of phenol- formaldehyde-lignin resin determined by contact angle measurement and inverse gas chromatogr- aphy. Ind. Crops Prod. 23:115–121. doi:10.1016/j.indcrop.2005.04.004.
  • Yaakob, M., R. Roslan, N. Salim, and S. Mustapha. 2022. Structural and thermal behavior of lignin-based formaldehyde-free phenolic resin. Mater. Today: Proc. 51:1388–1391.doi:10.1016/j.matpr.2021.11.526.
  • Vidula, R., H. Fernandes, and P. Gadekar. 2022. Study of scavengers for free formaldehyde reduction in phenolic resins used in polychloroprene based contact adhesives. Int. J. Adhesion & Adhesives 115:103122. doi:10.1016/j.ijadhadh.2022.103122.
  • Mohammed, R. N., G. Babu, R. Saminathan, A. M. Babeer, and Y. P. Akshay. 2022. Experimental investigation on compression strength of epoxy/PVC blend with different fibre glass reinforcements. Mater. Today: Proc. 49:1650–1657. doi:10.1016/j.matpr.2021.07.427.
  • Sarika, P., P. Nancarrow, A. Khansaheb, and T. Ibrahim. 2020. Bio-based alternatives to phenol and formaldehyde for the production of resins. Polymers 12:2237.
  • Zhou, D. 2008. Curing properties of novolac-type phenolic resin with vary O/P ratios by differential scanning calorimetry. Polymer Materials Science & Engineering 24:131–133. 137.
  • Sabzevari, S., S. Alavi-Soltani, and B. Minaie. 2011. Effect of thermoplastic toughening agent on glass transition temperature and cure kinetics of an epoxy prepreg. J. Therm. Anal. Calorim. 106:905–911. doi:10.1007/s10973-011-1587-5.
  • Natali, M., M. Monti, D. Puglia, J. M. Kenny, and L. Torre. 2012. Ablative properties of carbon black and MWNT/phenolic composites: a comparative study. Composites Part A 43:174–182. doi:10.1016/j.compositesa.2011.10.006.
  • Bianchi, O., R. Oliveira, R. Fiorio, J. Martins, A. Zattera, and L. Canto. 2008. Assessment of avrami, ozawa and Avrami-Ozawa equations for determination of EVA crosslinking kinetics from DSC measurements. Polym. Test. 27:722–729.
  • Stephy, A., A. Antony, and T. Francis. 2021. Thermal decomposition kinetics of melt-mixed ethylene-co-vinyl acetate-based bio-composites. Mater. Today Chem. 21:100544.
  • Xu, S. F., S. S. Xia, Y. Z. Chen, H. Xiao, M. W. Jing, and Q. L. Feng. 2020. Thermal behavior analysis of melamine modified Urea-Formaldehyde resin with different molar ratios. MSF. 1001:61–66.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.