91
Views
0
CrossRef citations to date
0
Altmetric
Articles

Thermal decomposition kinetic study on one-pack formulations of epoxy resin cured with novel phosphorus-containing flame retardant latent curing agents

ORCID Icon, &
Pages 596-624 | Received 21 Jan 2023, Accepted 07 Aug 2023, Published online: 18 Oct 2023

References

  • Huang, J., W. Guo, X. Wang, L. Song, and Y. Hu. 2021. Intrinsically flame retardant cardanol-based epoxy monomer for high-performance thermosets. Polym. Degrad. Stab. 186:109519. doi:10.1016/j.polymdegradstab.2021.109519
  • Ashrafi, M., A. R. Ghasemi, and M. Hamadanian. 2019. Optimization of thermo-mechanical and antibacterial properties of epoxy/polyethylene glycol/MWCNTs nano-composites using response surface methodology and investigation thermal cycling fatigue. Polym. Test. 78:105946. doi:10.1016/j.polymertesting.2019.105946
  • Khandelwal, V., S. K. Sahoo, A. Kumar, and G. Manik. 2018. Electrically conductive green composites based on epoxidized linseed oil and polyaniline: an insight into electrical, thermal and mechanical properties. Compos. B. Eng. 136:149–157. doi:10.1016/j.compositesb.2017.10.030
  • Ashrafi, M., M. Hamadanian, and A. R. Ghasemi. 2021. Epoxy/polyethylene glycol/TiO2: Design, fabrication and investigation of mechanical properties, thermal cycling fatigue and antibacterial activity. J. Polym. Environ. 29:3867–3877. doi:10.1007/s10924-021-02115-4
  • Wu, F., X. Zhou, and X. Yu. 2018. Reaction mechanism, cure behavior and properties of a multifunctional epoxy resin, TGDDM, with latent curing agent dicyandiamide. RSC Adv. 8:8248–8258. doi:10.1039/c7ra13233f
  • Barczewski, M., D. Matykiewicz, K. Sałasińska, D. Kozicki, A. Piasecki, K. Skórczewska, and K. Lewandowski. 2019. Poly (vinyl chloride) powder as a low-cost flame retardant modifier for epoxy composites. Int. J. Polym. Anal. 24:447–456. doi:10.1080/1023666X.2019.1602915
  • Ashrafi, M., M. Hamadanian, A. R. Ghasemi, and F. Jookar Kashi. 2019. Improvement mechanical and antibacterial properties of epoxy by polyethylene glycol and Ag/CuO nanoparticles. Polym. Compos. 40:3393–3401. doi:10.1002/pc.25200
  • Derouet, D., F. Morvan, and J. Brosse. 1996. Chemical modification of epoxy resins by dialkyl (or aryl) phosphates: evaluation of fire behavior and thermal stability. J. Appl. Polym. Sci. 62:1855–1868. doi:10.1002/(SICI)1097-4628(19961212)62:11<1855::AID-APP10>3.0.CO;2-Y
  • Zhang, B., Y. Zhao, X. Sun, X. Fei, W. Wei, X. Li, and X. Liu. 2020. Microcapsules derived from pickering emulsions as thermal latent curing accelerator for epoxy resins. J. Ind. Eng. Chem. 83:224–234. doi:10.1016/j.jiec.2019.11.032
  • Shen, J., J. Liang, X. Lin, H. Lin, J. Yu, and S. Wang. 2021. The Flame-Retardant mechanisms and preparation of polymer composites and their potential application in construction engineering. Polymers (Basel). 14:82. doi:10.3390/polym14010082
  • Shao, Z. B., Z. C. Tang, X. Z. Lin, J. Jin, Z. Y. Li, and C. Deng. 2020. Phosphorus/sulfur-containing aliphatic polyamide curing agent endowing epoxy resin with well-balanced flame safety, transparency and refractive index. Mater. Des. 187:108417. doi:10.1016/j.matdes.2019.108417
  • Gu, L., G. Chen, and Y. Yao. 2014. Two novel phosphorus–nitrogen-containing halogen-free flame retardants of high performance for epoxy resin. Polym. Degrad. Stab. 108:68–75. doi:10.1016/j.polymdegradstab.2014.05.030
  • Liu, S., Z. Fang, H. Yan, V. S. Chevali, and H. Wang. 2016. Synergistic flame retardancy effect of graphene nanosheets and traditional retardants on epoxy resin. Compos. Part A Appl. Sci. 89:26–32. doi:10.1016/j.compositesa.2016.03.012
  • Veen, I. V. D., and J. D. Boer. 2012. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere. 88:1119–1153.
  • Battig, A., J. C. Markwart, F. R. Wurm, and B. Schartel. 2019. Hyperbranched phosphorus flame retardants: Multifunctional additives for epoxy resins. Polym. Chem. 10:4346–4358. doi:10.1039/C9PY00737G
  • Huo, S., P. Song, B. Yu, S. Ran, V. S. Chevali, L. Liu, Z. Fang, and H. Wang. 2021. Phosphorus-containing flame retardant epoxy thermosets: recent advances and future perspectives. Prog. Polym. Sci. 114:101366. doi:10.1016/j.progpolymsci.2021.101366
  • Gouri, M. E., A. E. Bachiri, S. E. Hegazi, R. Ziraoui, M. Rafik, and A. E. Harfi. 2011. A phosphazene compound multipurpose application-Composite material precursor and reactive flame retardant for epoxy resin materials. J. Mater. Environ. Sci. 2:319–334.
  • Wu, X., C. Dong, A. Wirasaputra, H. Huang, S. Liu, J. Zhao, and Y. Fu. 2018. Imparting high flame retardancy to epoxy resin with ultra-low loading of 5, 10-dihydro-phenophosphazine-10-oxide functioned triazine. High Perform. Polym. 30:742–751. doi:10.1177/0954008317723083
  • Shechter, L., and J. Wynstra. 1956. Glycidyl ether reactions with alcohols, phenols, carboxylic acids, and acid anhydrides. Ind. Eng. Chem. 48:86–93. doi:10.1021/ie50553a028
  • Rocks, J., L. Rintoul, F. Vohwinkel, and G. George. 2004. The kinetics and mechanism of cure of an amino-glycidyl epoxy resin by a co-anhydride as studied by FT-Raman spectroscopy. Polymer. 45:6799–6811. doi:10.1016/j.polymer.2004.07.066
  • Shi, K., Y. Shen, Y. Zhang, and T. Wang. 2018. A modified imidazole as a novel latent curing agent with toughening effect for epoxy. Eng. Sci. 5:66–72.
  • Zhang, S., P. Yang, Y. Bai, T. Zhou, R. Zhu, and Y. Gu. 2017. Polybenzoxazines: Thermal responsiveness of hydrogen bonds and application as latent curing agents for thermosetting resins. ACS Omega. 2:1529–1534. doi:10.1021/acsomega.7b00075
  • Chen, C., B. Li, C. Wang, S. Iwasaki, M. Kanari, and D. Lu. UV and Thermal Cure Epoxy Adhesives. Paint. Coat. Ind. IntechOpen, 2013.
  • Zhao, L., X. Yang, Q. Li, and L. Ma. 2019. Latent curing agent DDM‐PMMA microcapsule for epoxy resin. J. Appl. Polym. Sci. 136:47757.
  • Xu, Y. J., L. Chen, W. H. Rao, M. Qi, D. M. Guo, W. Liao, and Y. Z. Wang. 2018. Latent curing epoxy system with excellent thermal stability, flame retardance and dielectric property. J. Chem. Eng. 347:223–232. doi:10.1016/j.cej.2018.04.097
  • Chang, H., B. Zhang, P. Zhu, R. Sun, and C. Wong. 2018. Preparation and characterization of the double-side adhesive tape with reactive properties and high thermal conductivity for electronic package. 19th International Conference on Electronic Packaging Technology (ICEPT), IEEE.
  • Sima-Ella, E., and T. J. Mays. 2005. Analysis of the oxidation reactivity of carbonaceous materials using thermogravimetric analysis. J. Therm. Anal. Calorim. 80:109–113. doi:10.1007/s10973-005-0621-x
  • Mu, L., J. Chen, H. Yin, X. Song, A. Li, and X. Chi. 2015. Pyrolysis behaviors and kinetics of refining and chemicals wastewater, lignite and their blends through TGA. Bioresour. Technol. 180:22–31. doi:10.1016/j.biortech.2014.12.090
  • Yaman, S. 2004. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers. Manag. 45:651–671. doi:10.1016/S0196-8904(03)00177-8
  • Kissinger, H. E. 1956. Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Natl. Bur. Stan. 57:217–221. doi:10.6028/jres.057.026
  • Flynn, J. H., and L. A. Wall. 1966. A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci. B Polym. Lett. 4:323–328. doi:10.1002/pol.1966.110040504
  • Kissinger, H. E. 1957. Reaction kinetics in differential thermal analysis. Anal. Chem. 29:1702–1706. doi:10.1021/ac60131a045
  • Zhang, X. 2020. Applications of kinetic methods in thermal analysis: a review. Eng. Sci. 14:1–13. doi:10.30919/es8d1132
  • Balart, R., D. Garcia-Sanoguera, L. Quiles-Carrillo, N. Montanes, and S. Torres-Giner. 2019. Kinetic analysis of the thermal degradation of recycled acrylonitrile-butadiene-styrene by non-isothermal thermogravimetry. Polymers (Basel) 11:281. doi:10.3390/polym11020281
  • Sadhukhan, A. K., P. Gupta, and R. K. Saha. 2009. Modelling of pyrolysis of large wood particles. Bioresour. Technol. 100:3134–3139. doi:10.1016/j.biortech.2009.01.007
  • Xu, Y., and B. Chen. 2013. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour. Technol. 146:485–493. doi:10.1016/j.biortech.2013.07.086
  • Kumar, M., P. K. Mishra, and S. N. Upadhyay. 2020. Thermal degradation of rice husk: effect of pre-treatment on kinetic and thermodynamic parameters. Fuel. 268:117164. doi:10.1016/j.fuel.2020.117164
  • Kojic, M. M., J. T. Petrovic, M. S. Petrovic, S. M. Stankovic, S. J. Porobic, M. T. Marinovic-Cincovic, and M. L. Mihajlovic. 2021. Hydrothermal carbonization of spent mushroom substrate: Physicochemical characterization, combustion behavior, kinetic and thermodynamic study. J. Anal. Appl. Pyrolysis. 155:105028.
  • Kamalipour, J., M. H. Beheshty, and M. J. Zohuriaan-Mehr. 2022. Novel phosphonated hardeners derived from diamino diphenyl sulfone for epoxy resins: Synthesis and one-pack flame-retardant formulation alongside dicyandiamide. Polym. Degrad. Stab. 199:109917. doi:10.1016/j.polymdegradstab.2022.109917
  • Hayaty, M., H. Honarkar, and M. H. Beheshty. 2013. Curing behavior of dicyandiamide/epoxy resin system using different accelerators. Iran. Polym. J. 22:591–598. doi:10.1007/s13726-013-0158-y
  • Yue, L., J. Li, X. Zhou, Y. Sun, M. Gao, T. Zhu, X. Zhang, T. Feng, Z. Shi, and Y. Liu. 2020. Flame retardancy and thermal behavior of an unsaturated polyester modified with kaolinite–urea intercalation complexes. Molecules. 25:4731. doi:10.3390/molecules25204731
  • Asim, M., M. T. Paridah, M. Chandrasekar, R. M. Shahroze, M. Jawaid, M. Nasir, and R. Siakeng. 2020. Thermal stability of natural fibers and their polymer composites. Iran. Polym. J. 29:625–648. doi:10.1007/s13726-020-00824-6
  • Ma, Z., D. Chen, J. Gu, B. Bao, and Q. Zhang. 2015. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. Energy Convers. Manag. 89:251–259. doi:10.1016/j.enconman.2014.09.074
  • Ferdosian, F., Z. Yuan, M. Anderson, and C. C. Xu. 2016. Thermal performance and thermal decomposition kinetics of lignin-based epoxy resins. J. Anal. Appl. Pyrolysis. 119:124–132. doi:10.1016/j.jaap.2016.03.009
  • Kmita, A., W. Knauer, M. Holtzer, K. Hodor, G. Piwowarski, A. Roczniak, and K. Gorecki. 2019. The decomposition process and kinetic analysis of commercial binder based on phenol-formaldehyde resin, using in metal casting. Appl. Therm. Eng. 156:263–275. doi:10.1016/j.applthermaleng.2019.03.093
  • Ahmad, M. S., M. A. Mehmood, G. Ye, O. S. Al-Ayed, M. Ibrahim, U. Rashid, H. Luo, G. Qadir, and I. A. Nehdi. 2017. Thermogravimetric analyses revealed the bioenergy potential of eulaliopsis binate. J. Therm. Anal. Calorim. 130:1237–1247. doi:10.1007/s10973-017-6398-x
  • D’Cruz, B., J. Samuel, and L. George. 2014. Green chemical incorporation of silicon into polyoxoanions of molybdenum: characterization, thermal kinetics study and their photocatalytic water splitting activity. RSC Adv. 4:63328–63337. doi:10.1039/C4RA12331J
  • Li, K., W. Zhang, M. Fu, C. Li, and Z. Xue. 2022. Discussion on criterion of determination of the kinetic parameters of the linear heating reactions. Minerals. 12:81. doi:10.3390/min12010081
  • Barral, L., J. Cano, J. López, I. López-Bueno, P. Nogueira, M. J. Abad, and C. Ramı́rez. 2000. Decomposition behavior of epoxy-resin systems cured by diamines. Eur. Polym. J. 36:1231–1240. doi:10.1016/S0014-3057(99)00166-4
  • Dyakonov, T., P. J. Mann, Y. Chen, and W. T. K. Stevenson. 1996. Thermal analysis of some aromatic amine cured model epoxy resin systems-II: Residues of degradation. Polym. Degrad. Stab. 54:67–83. doi:10.1016/0141-3910(96)00096-1
  • Wu, S., S. Liu, Y. Liu, Q. Zhu, and H. Wei. 2012. Thermal stability, thermal decomposition and mechanism analysis of cycloaliphatic epoxy/4,4′-dihydroxydiphenylsulfone/aluminum complexes latent resin systems. J. Wuhan Univ. Technol-Mat. Sci. Edit. 27:1061–1067. doi:10.1007/s11595-012-0601-5
  • Ramis, X., J. M. Morancho, A. Cadenato, J. M. Salla, and X. Fernandez-Francos. 2007. Effect of oxygen on the photopolymerization of a mixture of two dimethacrylates. Thermochim. Acta. 463:81–86. doi:10.1016/j.tca.2007.07.016
  • Sbirrazzuoli, N. 2020. Determination of pre-exponential factor and reaction mechanism in a model-free way. Thermochim. Acta. 691:178707. doi:10.1016/j.tca.2020.178707
  • Vlaev, L., N. Nedelchev, K. Gyurova, and M. Zagorcheva. 2008. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J. Anal. Appl. Pyrolysis. 81:253–262. doi:10.1016/j.jaap.2007.12.003
  • Barbanera, M., F. Cotana, and U. Di Matteo. 2018. Co-combustion performance and kinetic study of solid digestate with gasification biochar. Renew. Energy. 121:597–605. doi:10.1016/j.renene.2018.01.076
  • Ruvolo-Filho, A., and P. S. Curti. 2006. Chemical kinetic model and thermodynamic compensation effect of alkaline hydrolysis of waste poly (ethylene terephthalate) in nonaqueous ethylene glycol solution. Ind. Eng. Chem. Res. 45:7985–7996. doi:10.1021/ie060528y
  • Maia, A. A. D., and L. C. de Morais. 2016. Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresour. Technol. 204:157–163. doi:10.1016/j.biortech.2015.12.055
  • SCh, T., S. D. Genieva, A. S. Dimitrova, and L. T. Vlaev. 2008. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polym. Lett. 2:133–146.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.