146
Views
0
CrossRef citations to date
0
Altmetric
Articles

A study on surfactant modified polypyrrole nanostructures and its applications in supercapacitors

ORCID Icon
Pages 625-646 | Received 21 Apr 2023, Accepted 28 Sep 2023, Published online: 20 Oct 2023

References

  • Dubey, N., C. S. Kushwaha, and S. K. Shukla. 2020. A review on electrically conducting polymer bionanocomposites for biomedical and other applications. Int. J. Polymeric. Mater. Polymeric Biomater. 69:709–727. doi:10.1080/00914037.2019.1605513
  • Dubey, N., and S. Arora. 2021. Surfactant assisted synthesis of pH responsive polyaniline cellulose biocomposite for sensor applications. Polymer-Plastics Technol. Mater. 60:1135–1147. doi:10.1080/25740881.2021.1888985
  • Adhikari, A.,. S. De, A. Halder, S. Pattanayak, K. Dutta, D. Mondal, D. Rana, R. Ghosh, N. K. Bera, S. Chattopadhyay, M. Chakraborty, D. Ghoshal, and D. Chattopadhyay. 2018. Biosurfactant tailored synthesis of porous polypyrrole nanostructures: a facile approach towards CO2 adsorption and dopamine sensing. Synth. Metals 245:209–222. doi:10.1016/j.synthmet.2018.09.005
  • Shukla, S. K. 2013. Synthesis and characterization of polypyrrole grafted cellulose for humidity sensing. Int. J. Biol. Macromol. 62:531–536. doi:10.1016/j.ijbiomac.2013.10.014
  • Dupare, D. B., M. D. Shirsat, and A. S. Aswar. 2011. Synthesis and characterization of polypyrrole- polyvinyl alcohol composite film with various organic acids dopants and their gas sensing behavior. Indian J. Chem. Technol. 18:446–450.
  • Stejskal, J., I. Sapurina, J. Vilčáková, M. Jurča, M. Trchová, Z. Kolská, J. Prokeš, and I. Křivka. 2021. One-Pot preparation of conducting melamine/polypyrrole/magnetite ferrosponge. ACS Appl. Polym. Mater. 3:1107–1115. doi:10.1021/acsapm.0c01331
  • Pruna, A. I., N. M. Rosas-Laverde, and B. D. Mataix. 2020. Effect of deposition parameters on electrochemical properties of Polypyrrole-Graphene oxide films. Materials 13:624. doi:10.3390/ma13030624
  • Ahn, K. J., Y. Lee, H. Choi, M. S. Kim, K. Im, S. Noh, and H. Yoon. 2015. Surfactant- Templated synthesis of polypyrrole nanocages as redox mediators for efficient energy storage. Sci. Rep. 5:14097. doi:10.1038/srep14097
  • Pandit, V. K., N. M. Soudagar, C. D. Lokhande, and S. S. Joshi. 2020. Galvanostatically deposited polypyrrole thin films for supercapacitor application: effect of surfactant. Mater. Today: Proc. 23:246–259. doi:10.1016/j.matpr.2020.02.023
  • Xu, W., A. Palumbo, J. Xu, Y. Jiang, C. H. Choi, and E. H. Yang. 2017. On-Demand capture and release of organic droplets using surfactant-doped polypyrrole surfaces. ACS Appl. Mater. Interfaces. 9:23119–23127. doi:10.1021/acsami.7b03787
  • Wang, P. C., and J. Y. Yu. 2012. Dopant-dependent variation in the distribution of polarons and bipolarons as charge-carriers in polypyrrole thin films synthesized by oxidative chemical polymerization. React. Funct. Polym. 72:311–316. doi:10.1016/j.reactfunctpolym.2012.03.005
  • Stejskal, J., M. Omastova, S. Fedorova, J. Prokes, and M. Trchova. 2003. Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study. Polymer 44:1353–1358. doi:10.1016/S0032-3861(02)00906-0
  • Carswell, A. D. W., E. A. O'Rear, and B. P. Grady. 2003. Adsorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and polypyrrole nanostructures on flat surfaces: from spheres to wires to flat films. J. Am. Chem. Soc. 125:14793–14800. doi:10.1021/ja0365983
  • Abdolmaleki, A. Y., and H. Eisazadeh. 2012. Preparation and characterization of polypyrrole nanocomposites using various surfactants in aqueous and aqueous/non- aqueous media. Res. J. App. Sci. Eng. Technol. 4:329–333.
  • Xing, S., and G. Zhao. 2007. Morphology, structure and conductivity of polypyrrole prepared in the presence of mixed surfactants in aqueous solutions. J. Appl. Polym. Sci. 104:1987–1996. doi:10.1002/app.25912
  • Stejskal, J., and M. Trchova. 2020. Surfactants and amino acids in the control of nanotubular morphology of polypyrrole and their effect on the conductivity. Colloid Polym. Sci. 298:319–325. doi:10.1007/s00396-020-04607-6
  • Bayat, M., H. Izadan, B. G. Molina, M. Sánchez, S. Santiago, D. Semnani, M. Dinari, G. Guirado, F. Estrany, and C. Alemán. 2019. Electrochromic self-electrostabilized polypyrrole films doped with surfactant and azo dye. Polymers (Basel) 11:1757. doi:10.3390/polym11111757
  • Eisazadeh, H. 2007. Studying the characteristics of polypyrrole and its composites. World J. Chem. 2:67–74.
  • Zhang, X., J. Zhang, W. Song, and Z. J. Liu. 2006. Controllable synthesis of conducting polypyrrole nanostructures. J. Phys. Chem. B. 110:1158–1165. doi:10.1021/jp054335k
  • Omastová, M., M. Trchová, J. Kovářová, and J. Stejskal. 2003. Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth. Met. 138:447–455. doi:10.1016/S0379-6779(02)00498-8
  • Kwon, W. J., D. H. Suh, B. D. Chin, and J. W. Yu. 2008. Preparation of polypyrrole nanoparticles in mixed surfactants system. J. Appl. Polymer Sci. 110:1324–1329. doi:10.1002/app.28478
  • Yang, Q., Z. Hou, and T. Huang. 2015. Self-assembled polypyrrole film by interfacial polymerization for supercapacitor applications. J. Appl. Polym. Sci. doi:10.1002/APP.41615
  • Fan, L., and J. Maier. 2006. High-performance polypyrrole electrode materials for redox supercapacitors. Electrochem. Commun. 8:937–940. doi:10.1016/j.elecom.2006.03.035
  • Wang, Y., H. Wang, W. Zhang, G. Fei, K. Shu, I. Sun, S. Tian, H. Niu, M. Wang, G. Hu, and Y. Duan. 2023. A simple route to fabricate ultralong and uniform polypyrrole nanowires with high electrochemical capacitance for supercapacitor electrodes. ACS Appl. Polym. Mater. 5:1254–1263. Publication Date: January 18, 2023 doi:10.1021/acsapm.2c01731
  • Muthusamy, S., J. Charles, M. S. Michael, and K. S. Kesavan. 2019. Enhanced specific capacitance of a novel ternary polypyrrole incorporated with prussian blue and mesoporous carbon black for high performance supercapacitor applications. Mater. Res. Bull. 120:110587. doi:10.1016/j.materresbull.2019.110587
  • Zhao, J., J. Wu, B. Li, W. Du, Q. Huang, M. Zheng, H. Xue, and H. Pang. 2016. Facile synthesis of polypyrrole nanowires for high performance supercapacitor electrode materials. Prog. Nat. Sci. Mat. Int. 26:237–242. doi:10.1016/j.pnsc.2016.05.015
  • Malik, R., S. Lata, and R. S. Malik. 2019. Electrochemical behavior of composite electrode based on sulphonated, polymeric surfactant (SPEEK/PSS) incorporated polypyrrole for supercapacitor. J. Electroanalyt. Chem. 835:48–59. doi:10.1016/j.jelechem.2019.01.022
  • Dubey, N. 2023. Chemical synthesis and characterization of polyaniline-g-Cellulose biocomposites in the presence of surfactants and their applications in pH sensors. Chem. Afr. 6:205–220. doi:10.1007/s42250-022-00340-5
  • Ismail, H. K., I. B. Qader, H. F. Alesary, J. H. Kareem, and A. D. Ballantyne. 2022. Effect of graphene oxide and temperature on electrochemical polymerization of pyrrole and its stability performance in a novel eutectic solvent(choline Chloride-Phenol) for supercapacitor applications. ACS Omega. 7:34326–34340. doi:10.1021/acsomega.2c03882.
  • Yussuf, A., M. Al-Saleh, S. Al-Enezi, and G. Abraham. 2018. Synthesis and characterization of conductive polypyrrole: the influence of the oxidants and monomer on the electrical, thermal, and morphological properties. Int. J. Polymer Sci. 2018:1–8. doi:10.1155/2018/4191747
  • Li, M., L. Yang, and Y. Zhang. 2015. Hierarchical structure of hollow thorn-like polypyrrole microtubes with enhanced electrochemical performance. RSC Adv. 5:1191–1197. doi:10.1039/C4RA12096E
  • Hsu, F. H., and T. M. Wu. 2012. In situ synthesis characterization of conductive polypyrrole/grapheme composites with improved solubility and conductivity. Syn Metals 162:682–687. doi:10.1016/j.synthmet.2012.02.025
  • Wu, A., H. Kolla, and S. K. Manohar. 2005. Chemical synthesis of highly conducting polypyrrole nanofiber film. Macromolecules 38:7873–7875. doi:10.1021/ma051299e
  • Hajlaoui, O., R. Khiari, L. Ajili, N. Batis, and L. Bergaoui. 2020. Design and characterization of type I cellulose-polyanilinecomposites from various cellulose sources: a comparative study. Chem. Afr. 3:783–792. doi:10.1007/s42250-020-00148-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.