74
Views
0
CrossRef citations to date
0
Altmetric
Articles

Fabrication of hydrolyzed keratin-modified rigid polyurethane foams and its thermal stability and combustion performance

ORCID Icon, , , , &
Pages 662-683 | Received 04 Apr 2023, Accepted 08 Oct 2023, Published online: 26 Oct 2023

References

  • Akindoyo, J. O., M. D. H. Beg, S. Ghazali, M. R. Islam, N. Jeyaratnam, and A. R. Yuvaraj. 2016. Polyurethane types, synthesis and applications - a review. RSC Adv. 6:114453–114482. doi:10.1039/C6RA14525F
  • Chattopadhyay, D. K., and D. C. Webster. 2009. Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 34:1068–1133. doi:10.1016/j.progpolymsci.2009.06.002
  • Levchik, S. V., and E. D. Weil. 2004. Thermal decomposition, combustion and fire retardancy of polyurethanes – a review of the recent literature. Polym. Int. 53:1585–1610. doi:10.1002/pi.1314
  • Singh, H., and A. K. Jain. 2008. Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: a comprehensive review. J. Appl. Polym. Sci. 111:1115–1143. doi:10.1002/app.29131
  • Pielichowski, K., K. Kulesza, and E. M. Pearce. 2003. Thermal degradation studies on rigid polyurethane foams blown with pentane. J. Appl. Polym. Sci. 88:2319–2330. doi:10.1002/app.11982
  • Zhang, X., S. M. Sun, B. Liu, Z. Wang, and H. Xie. 2022. Synergistic effect of combining amino trimethylphosphonate calcium and expandable graphite on flame retardant and thermal stability of rigid polyurethane foam. Int J Polym Anal Charact 27:302–315. doi:10.1080/1023666X.2022.2070694
  • Wang, X., C. Lu, and C. Chen. 2014. Effect of chicken-feather protein-based flame retardant on flame retardingperformance of cotton fabric. J. Appl. Polym. Sci 131:40584 (1–8). doi:10.1002/APP.40584
  • Alongi, J., R. A. Carletto, F. Bosco, F. Carosio, A. Di Blasio, F. Cuttica, V. Antonucci, M. Giordano, and G. Malucelli. 2014. Caseins and hydrophobins as novel green flame retardantsfor cotton fabrics. Polym Degrad. Stabil. 99:111–117. doi:10.1016/j.polymdegradstab.2013.11.016
  • Carosio, F., A. Di Blasio, F. Cuttica, J. Alongi, and G. Malucelli. 2014. Flame retardancy of polyester and polyester-cotton blendstreated with caseins. Ind. Eng. Chem. Res. 53:3917–3923. doi:10.1021/ie404089t
  • Bosco, F., R. A. Carletto, J. Alongi, L. Marmo, A. Di Blasio, and G. Malucelli. 2013. Thermal stability and flame resistance of cotton fabrics treatedwith whey proteins. Carbohydr. Polym. 94:372–377. doi:10.1016/j.carbpol.2012.12.075
  • Shu, Q., L. Li, S. J. Li, and R. T. Liu. 2022. Preparation of wool keratin and flame retardant finishing of cotton fabric. Print. Dye. 48:43–47.
  • Jamaluddin, J. F., A. Firouzi, M. R. Islam, and A. N. A. Yahaya. 2020. Effects of luffa and glass fibers in polyurethane-based ternary sandwich composites for building materials. SN Appl. Sci. 2:746–751. doi:10.1007/s42452-020-3037-0
  • Hu, S. Q., and F. You. 2013. The effects of oxygen contents and heating rates on characteristics of pyrolysis prior to smoldering of flexible PU foam. Procedia Eng. 52:145–151. doi:10.1016/j.proeng.2013.02.119
  • Rao, W.-H., H.-X. Xu, Y.-J. Xu, M. Qi, W. Liao, S. Xu, and Y.-Z. Wang. 2018. Persistently flame-retardant flexible PU foams by a novel phosphorus-containing polyol. Chem. Eng. 343:198–206. doi:10.1016/j.cej.2018.03.013
  • Zhang, X., S. Sun, D. Yuan, Z. Wang, H. Xie, and Z. Su. 2023. Chicken feather protein for the thermal stability and combustion performance of rigid polyurethane foam. Int. Polym. Proc. doi:10.1515/ipp-2023-4364.
  • Zhang, X., S. Li, Z. Wang, G. Sun, and P. Hu. 2020. Thermal stability of flexible polyurethane foams containing modified layered double hydroxides and zinc borate. Int. J. Polym. Anal. Charact. 25:499–516. doi:10.1080/1023666X.2020.1812920
  • Ozawa, T. 1965. A new method of analyzing thermogravimetric data. Bcsj. 38:1881–1886. doi:10.1246/bcsj.38.1881
  • Kissinger, H. H. E. 1957. Reaction kinetics in differential thermal analysis. Anal. Chem. 29:1702–1706. doi:10.1021/ac60131a045
  • Guida, M. Y., H. Bouaik, L. El Mouden, A. Moubarik, A. Aboulkas, K. El Harfi, and A. Hannioui. 2017. Utilization of starink approach and avrami theory to evaluate the kinetic parameters of the pyrolysis of olive mill solid waste and olive mill wastewater. J. Adv. Chem. Eng. 7:1–8.
  • Parcheta, P.,. I. Koltsov, and J. Datta. 2018. Fully bio-based poly(propylene succinate) synthesis and investigation of thermal degradation kinetics with released gases analysis. Polym. Degrad. Stabil. 151:90–99. doi:10.1016/j.polymdegradstab.2018.03.002
  • Zhang, X., S. Li, Z. Wang, and D. L. Wang. 2020. Study on thermal stability of typical carbon fiber epoxy composites after airworthiness fire protection test. Fire Mater. 44:202–210. doi:10.1002/fam.2788
  • Mustata, F., N. Tudorachi, and L. Bicu. 2015. The kinetic study and thermal characterization of epoxy resins crosslinked with amino carboxylic acids. J. Anal. Appl. Pyro. 112:180–191. doi:10.1016/j.jaap.2015.01.030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.