61
Views
0
CrossRef citations to date
0
Altmetric
Articles

A new method for selecting and evaluating the hyperelastic model of tread rubber material under rolling contact condition

ORCID Icon &
Pages 15-41 | Received 10 Feb 2023, Accepted 27 Dec 2023, Published online: 17 Jan 2024

References

  • Tassara, M. F., K. Grigoriadis, and G. Mavros. 2021. Empirical models for the viscoelastic complex modulus with an application to rubber friction. Appl. Sci. 11:4831. doi:10.3390/app11114831
  • Khajehsaeid, H. 2018. A comparison between fractional-order and integer-order differential finite deformation viscoelastic models: effects of filler content and loading rate on material parameters. Int. J. Appl. Mech. 10:1850099. doi:10.1142/S1758825118500990
  • Di Paola, M., G. Alotta, A. Burlon, and G. Failla. 2020. A novel approach to nonlinear variable-order fractional viscoelasticity. Philos. Trans. A Math. Phys. Eng. Sci. 378:20190296. doi:10.1098/rsta.2019.0296
  • Gil-Negrete, N., J. Vinolas, and L. Kari. 2009. A nonlinear rubber material model combining fractional order viscoelasticity and amplitude dependent effects. J. Appl. Mech. 76:2999454. doi:10.1115/1.2999454
  • Pritz, T. 2003. Five-parameter fractional derivative model for polymeric damping materials. J. Sound Vib. 265:935–952. 10.1016/S0022-460X(02)01530-4
  • Guo, J., A. T. Zehnder, C. Creton, and C.-Y. Hui. 2020. Time dependent fracture of soft materials: linear versus nonlinear viscoelasticity. Soft Matter. 16:6163–6179. doi:10.1039/D0SM00097C
  • Yang, H., X.-F. Yao, H. Yan, Y-N Yuan, Y.-F. Dong, and Y.-H. Liu. 2018. Anisotropic hyper-viscoelastic behaviors of fabric reinforced rubber composites. Compos. Struct. 187:116–121. doi:10.1016/j.compstruct.2017.12.026
  • Ogden, R. W. 1997. Non-Linear Elastic Deformations. New York: Courier Corporation.
  • Mooney, M. 1940. A theory of large elastic deformation. J. Appl. Phys. 11:582–592. doi:10.1063/1.1712836
  • Yeoh, O. H. 1993. Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66:754–771. doi:10.5254/1.3538343
  • Gent, A. N. 1996. A new constitutive relation for rubber. Rubber Chem. Technol. 69:59–61. 10.5254/1.3538357
  • Ogden, R. W. 1972. Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids. Proc. Royal Soc. London. A. Math. Phys.l Sci. 326: 565–584. doi:10.1098/rspa.1972.0026
  • James, H. M., and E. Guth. 1943. Theory of the elastic properties of rubber. J. Chem. Phys. 11:455–481. doi:10.1063/1.1723785
  • Flory, P. J., and J. Rehner. Jr. 1943. Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J. Chem. Phys. 11:512–520. doi:10.1063/1.1723791
  • Arruda, E. M., and M. C. Boyce. 1993. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids. 41:389–412. doi:10.1016/0022-5096(93)90013-6
  • Marckmann, G., and E. Verron. 2006. Comparison of hyperelastic models for rubber-like materials. Rubber Chem. Technol. 79:835–858. doi:10.5254/1.3547969
  • Peng, X., L. Han, and L. Li. 2021. A consistently compressible Mooney-Rivlin model for the vulcanized rubber based on the Penn’s experimental data. Polym. Eng. Sci. 61:2287–2294. doi:10.1002/pen.25757
  • Korba, A. G., and M. E. Barkey. New model for hyper-elastic materials behavior with an application on natural rubber, International Manufacturing Science and Engineering Conference, American Society of Mechanical Engineers, 2017, pp. V002T003A020. 10.1115/MSEC2017-2792
  • Zhang, J., F. Xue, Y. Wang, X. Zhang, and S. Han. 2018. Strain energy-based rubber fatigue life prediction under the influence of temperature. R. Soc. Open Sci. 5:180951. 10.1098/rsos.180951
  • Loew, P. J., B. Peters, and L. A. Beex. 2019. Rate-dependent phase-field damage modeling of rubber and its experimental parameter identification. J. Mech. Phys. Solids. 127:266–294. 10.1016/j.jmps.2019.03.022
  • Wei, Z., and S. Yang. 2020. An elastic model for rubber-like materials based on a force-equivalent network. Europ. J. Mech.-A/Solids 84:104078. doi:10.1016/j.euromechsol.2020.104078
  • Schapery, R. 2020. A model for the prediction of rubber friction with schallamach waves. Tribol. Int. 143:106018. doi:10.1016/j.triboint.2019.106018
  • Aloui, S., and M. El Yaagoubi. 2021. Determining the compression-equivalent deformation of sbr-based rubber material measured in tensile mode using the finite element method. Appl. Mech. 2:195–208. doi:10.3390/applmech2010012
  • Tobajas, R., D. Elduque, E. Ibarz, C. Javierre, and L. Gracia. 2020. A new multiparameter model for multiaxial fatigue life prediction of rubber materials. Polymers. 12:1194. doi:10.3390/polym12051194
  • Mihai, L. A., T. E. Woolley, and A. Goriely. 2018. Stochastic isotropic hyperelastic materials: constitutive calibration and model selection. Proc. Math. Phys. Eng. Sci. 474:20170858. doi:10.1098/rspa.2017.0858
  • Hossain, M., and P. Steinmann. 2013. More hyperelastic models for rubber-like materials: consistent tangent operators and comparative study. J. Mech. Behav. Mat. 22:27–50. doi:10.1515/jmbm-2012-0007
  • Steinmann, P., M. Hossain, and G. Possart. 2012. Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data. Arch. Appl. Mech. 82:1183–1217. doi:10.1007/s00419-012-0610-z
  • Jebur, Q., M. J. Jweeg, and M. Al-Waily. 2021. Ogden model for characterising and simulation of PPHR Rubber under different strain rates. Aust. J. Mech. Eng. 21:911–925. doi:10.1080/14484846.2021.1918375
  • Huri, D., and T. Mankovits. 2018. Comparison of the material models in rubber finite element analysis. IOP Conf. Ser. 393:012018. doi:10.1088/1757-899X/393/1/012018
  • Fu, X., Z. Wang, L. Ma, Z. Zou, Q. Zhang, and X. Guan. 2020. Temperature-dependence of rubber hyperelasticity based on the eight-chain model. Polymers. 12:932. doi:10.3390/polym12040932
  • Fu, X., Z. Wang, and L. Ma. 2021. Ability of constitutive models to characterize the temperature dependence of rubber hyperelasticity and to predict the stress–strain behavior of filled rubber under different Defor-Mation states. Polymers. 13:369. doi:10.3390/polym13030369
  • Destrade, M., G. Saccomandi, and I. Sgura. 2017. Methodical fitting for mathematical models of rubber-like materials. Proc. R Soc. A. 473:20160811. doi:10.1098/rspa.2016.0811
  • Martins, P., R. Natal Jorge, and A. Ferreira. 2006. A comparative study of several material models for prediction of hyperelastic properties: application to silicone-rubber and soft tissues. Strain 42:135–147. doi:10.1111/j.1475-1305.2006.00257.x
  • Périé, J., and J. C. Passieux. 2020. Special issue on advances in digital image correlation (DIC). Appl. Sci. 10:1530. doi:10.3390/app10041530
  • Tuononen, A. J. 2014. Digital image correlation to analyse stick–slip behaviour of tyre tread block. Tribol. Int. 69:70–76. doi:10.1016/j.triboint.2013.09.003
  • Gao, X., Y. Zhuang, and S. Liu. 2021. High-speed 3D digital image correlation for measuring tire rolling resistance coefficient. Measurement. 171:108830. doi:10.1016/j.measurement.2020.108830
  • Gao, X.-L., Y. Zhuang, S. Liu, C.-W. Zhu, and Q. Chen. 2019. Digital image correlation to analyze slip state of tire tread block in the cornering condition. Optik. 185:571–584. doi:10.1016/j.ijleo.2019.03.146
  • Rivlin, R., and K. Sawyers. 1976. The strain-energy function for elastomers. Transact. Soc. Rheol. 20:545–557. doi:10.1122/1.549436
  • Rivlin, R. S., and A. Thomas. 1951. Large elastic deformations of isotropic materials VIII. Strain distribution around a hole in a sheet, philosophical transactions of the Royal Society of London. Series A, Mat. Phys. Sci. 243:289–298. doi:10.1098/rsta.1951.0005
  • Gao, X., Y. Zhuang, S. Liu, W. Fan, C. Zhu, and Q. Chen. 2020. High-speed 3D digital image correlation for rolling deformation of a tire sidewall and measuring dynamic contact patch length. Appl. Opt. 59:1313–1322. doi:10.1364/AO.377604

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.