77
Views
0
CrossRef citations to date
0
Altmetric
Articles

Evaluation of maleic anhydride-modified chitosan as filler reinforced PBAT composite film

, ORCID Icon &
Pages 64-74 | Received 10 Oct 2023, Accepted 22 Jan 2024, Published online: 16 Feb 2024

References

  • Zhang, Y., T. Sun, D. Zhang, Z. Shi, X. Zhang, C. Li, L. Wang, J. Song, and Q. Lin. 2020. Enhanced photodegradability of PVC plastics film by codoping nano-graphite and TiO2. Polym. Degrad. Stab. 181:109332. doi:10.1016/j.polymdegradstab.2020.109332.
  • Boydağ, F. Ş., S. V. Mamedov, V. A. Alekperov, and Y. Lenger Özcanli. 2003. Optical characterization of weakly absorbing PP, PE, and PP/PE films. Opt. Spectrosc. 95:225–229. doi:10.1134/1.1604429.
  • Sree, K. B., Y. M. Kumar, N. O. Gopal, and C. Ramu. 2017. Preparation and characterization of pure and copper-doped PVC films. J. Polym. Eng. 37:83–92. doi:10.1515/polyeng-2015-0446.
  • Wang, Z., D. Wang, Y. Fang, and J. Shen. 2018. Preparation and properties of antistatic polyethylene film coated polypropylene non-woven fabrics. Fibers Polym. 19:934–940. doi: 10.1007/s12221-018-8048-8.
  • Ferreira, F. V., L. S. Cividanes, R. F. Gouveia., et al. 2019. An overview on properties and applications of poly(butylene adipate- co -terephthalate)-PBAT based composites. Polym. Eng. Sci. 59:E7–E15. doi: 10.1002/pen.24770.
  • Chen, L., T. Qiang, W. Ren, Q. Tian, X. Zhang, and H. J. Zhang. 2023. Strong, water-repellent, and recyclable gelatin-based bioplastic film as sustainable express packaging film. J. Cleaner Prod. 385:135705. doi:10.1016/j.jclepro.2022.135705.
  • Liu, F.-F., S.-C. Wang, Z.-L. Zhu, and G.-Z. Liu. 2021. Current progress on marine microplastics pollution research: a review on pollution occurrence, detection, and environmental effects. Water 13:1713. doi:10.3390/w13121713.
  • Flury, M., and R. Narayan. 2021. Biodegradable plastic as an integral part of the solution to plastic waste pollution of the environment. Curr. Opin. Green Sustain. Chem. 30:100490. doi:10.1016/j.cogsc.2021.100490.
  • Kumar, R., K. Sadeghi, J. Jang, and J. Seo. 2023. Mechanical, chemical, and bio-recycling of biodegradable plastics: a review. Sci. Total Environ. 882:163446. doi:10.1016/j.scitotenv.2023.163446.
  • Galloway, T. S., M. Cole, and C. Lewis. 2017. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1:116. doi:10.1038/s41559-017-0116.
  • Wang, Z., J. Ding, X. Song, L. Zheng, J. Huang, H. Zou, and Z. Wang. 2023. Aging of poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends under different conditions: Environmental concerns on biodegradable plastic. Sci. Total Environ. 855:158921. doi:10.1016/j.scitotenv.2022.158921.
  • Rodrigues, B. V. M., A. S. Silva, G. F. S. Melo, L. M. R. Vasconscellos, F. R. Marciano, and A. O. Lobo. 2016. Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers. Mater. Sci. Eng. C Mater. Biol. Appl. 201659:782–791. doi:10.1016/j.msec.2015.10.075.
  • Gu, X., J. Hou, and S. Ai. 2022. Effect of silane modified nano‐SiO 2 on the mechanical properties and compatibility of PBAT/lignin composite films. J. Of Applied Polym. Sci. 139:52051. doi:10.1002/app.52051.
  • Liu, Y., S. Liu, Z. Liu, Y. Lei, S. Jiang, K. Zhang, W. Yan, J. Qin, M. He, S. Qin, and J. Yu. 2021. Enhanced mechanical and biodegradable properties of PBAT/lignin composites via silane grafting and reactive extrusion. Compos. Part B: Eng. 220:108980. doi:10.1016/j.compositesb.2021.108980.
  • Quiroz-Castillo, J. M., D. E. Rodríguez-Félix, H. Grijalva-Monteverde, T. Del Castillo-Castro, M. Plascencia-Jatomea, F. Rodríguez-Félix, and P. J. Herrera-Franco. 2014. Preparation of extruded polyethylene/chitosan blends compatibilized with polyethylene-graft-maleic anhydride. Carbohydr. Polym. 101:1094–1100. doi:10.1016/j.carbpol.2013.10.052.
  • Ma, F., B. Wang, X. Leng, Y. Wang, Z. Sun, P. Wang, L. Sang, and Z. Wei. 2022. Biodegradable PBAT/PLA/CaCO 3 blowing films with enhanced mechanical and barrier properties: Investigation of size and content of CaCO 3 particles. Macro. Mater. Eng. 307:2200135. doi:10.1002/mame.202200135.
  • Martínez-Camacho, A. P., M. O. Cortez-Rocha, A. Z. Graciano-Verdugo, F. Rodríguez-Félix, M. M. Castillo-Ortega, A. Burgos-Hernández, J. M. Ezquerra-Brauer, and M. Plascencia-Jatomea. 2013. Extruded films of blended chitosan, low density polyethylene and ethylene acrylic acid. Carbohydr. Polym. 91:666–674. doi:10.1016/j.carbpol.2012.08.076.
  • Xiao, L., Z. Yao, Y. He, Z. Han, X. Zhang, C. Li, P. Xu, W. Yang, and P. Ma. 2022. Antioxidant and antibacterial PBAT/lignin-ZnO nanocomposite films for active food packaging. Ind. Crops Prod. 187:115515. doi:10.1016/j.indcrop.2022.115515.
  • Wang, S., and Q. Xing. 2022. Preparation and in vitro biocompatibility of PBAT and chitosan composites for novel biodegradable cardiac occluders. e-Polymers 22:705–718. doi:10.1515/epoly-2022-0064.
  • Cazón, P., and M. Vázquez. 2020. Mechanical and barrier properties of chitosan combined with other components as food packaging film. Environ. Chem. Lett. 18:257–267. doi:10.1007/s10311-019-00936-3.
  • Zimet, P., Á. W. Mombrú, D. Mombrú, A. Castro, J. P. Villanueva, H. Pardo, and C. Rufo. 2019. Physico-chemical and antilisterial properties of nisin-incorporated chitosan/carboxymethyl chitosan films. Carbohydr. Polym. 219:334–343. doi:10.1016/j.carbpol.2019.05.013.
  • Liu, W., J. Xie, L. Li, B. Xue, X. Li, J. Gan, Z. Shao, and T. Sun. 2021. Properties of phenolic acid-chitosan composite films and preservative effect on Penaeus vannamei. J. Mol. Struct. 1239:130531. doi:10.1016/j.molstruc.2021.130531.
  • Wang, F., X. Yang, and Y. Zou. 2016. Effect of the maleation of lignosulfonate on the mechanical and thermal properties of lignosulfonate/poly(ε-caprolactone) blends. J. Appl. Polym. Sci. 133:42925. doi:10.1002/app.42925.
  • Timotius, D., Y. Kusumastuti, and N. R. E. Putri, Rochmadi. 2020. Proposed reaction mechanism of chitosan-graft-Maleic from chitosan and maleic anhydride. IOP Conf. Ser: Mater. Sci. Eng. 722:012078. doi:10.1088/1757-899X/722/1/012078.
  • Ahmed, I., L. Dildar, A. Haque, P. Patra, M. Mukhopadhyay, S. Hazra, M. Kulkarni, S. Thomas, J. R. Plaisier, S. B. Dutta, and J. K. Bal. 2018. Chitosan-fatty acid interaction mediated growth of langmuir monolayer and Langmuir-Blodgett films. J. Colloid Interface Sci. 514:433–442. doi:10.1016/j.jcis.2017.12.037.
  • Kaczmarek, H., and J. Zawadzki. 2010. Chitosan pyrolysis and adsorption properties of chitosan and its carbonizate. Carbohydr. Res. 345:941–947. doi:10.1016/j.carres.2010.02.024.
  • Mincheva, R., N. Manolova, R. Sabov, G. Kjurkchiev, and I. Rashkov. 2004. Hydrogels from chitosan crosslinked with poly(ethylene glycol) diacid as bone regeneration materials. e-Polymers 4:11. doi:10.1515/epoly.2004.4.1.643.
  • Hou, W., T. Yang, and Y. Yang. 2013. Infrared spectroscopy and thermogravimetric analysis of maleoylated chitosan. Phys. Chem. Inspect. 49:1163–1165. []. Chinese
  • Cai, Y., J. Lv, and J. Feng. 2013. Spectral characterization of four kinds of biodegradable plastics: Poly (lactic acid), poly (butylenes Adipate-Co-Terephthalate), poly (Hydroxybutyrate-Co-Hydroxyvalerate) and poly (butylenes succinate) with FTIR and raman spectroscopy. J. Polym. Environ. 21:108–114. doi:10.1007/s10924-012-0534-2.
  • Honma, T., L. Zhao, N. Asakawa, and Y. Inoue. 2006. Poly(ɛ-Caprolactone)/chitin and poly(ɛ-Caprolactone)/chitosan blend films with compositional gradients: Fabrication and their biodegradability. Macromol. Biosci. 6:241–249. doi:10.1002/mabi.200500216.
  • Karpova, S. G., A. A. Ol’khov, A. L. Iordanskii, S. M. Lomakin, N. S. Shilkina, and A. A. Popov. 2016. Structural dynamic properties of nonwoven composite mixtures based on ultrafine tissues of poly(3-hydroxybutyrate) with chitosan. Russ. J. Phys. Chem. B. 10:687–698. doi:10.1134/S1990793116040230.
  • Taurino, R., C. Sciancalepore, L. Collini, M. Bondi, and F. Bondioli. 2018. Functionalization of PVC by chitosan addition: Compound stability and tensile properties. Compos. Part B: Eng. 149:240–247. doi:10.1016/j.compositesb.2018.05.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.