57
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis of novel stimuli-responsive hydrogels based on polyurethane

, ORCID Icon &
Pages 213-225 | Received 12 Sep 2023, Accepted 18 Apr 2024, Published online: 20 May 2024

References

  • Kaith, B. S., A. Singh, A. K. Sharma, and D. Sud. 2021. Hydrogels: synthesis, classification, properties and potential applications—a brief review. J. Polym. Environ. 29:3827–3841. doi:10.1007/s10924-021-02184-5
  • Abu Elella, M. H., D. H. Hanna, R. R. Mohamed, and M. W. Sabaa. 2022. Synthesis of xanthan gum/trimethyl chitosan interpolyelectrolyte complex as pH-sensitive protein carrier. Polym. Bull. 79:2501–2522. doi:10.1007/s00289-021-03656-3
  • Cao, P.-F., J. D. Mangadlao, and R. C. Advincula. 2015. Stimuli-Responsive polymers and their potential applications in oil-gas industry. Polym. Rev. 55:706–733. doi:10.1080/15583724.2015.1040553
  • Park, C. W., S. M. Cho, and B. K. Kim. 2006. Synthesis and properties of thermosensitive polyurethane-b-poly(N-isopropyl acrylamide). React. Funct. Polym. 66:585–591. doi:10.1016/j.reactfunctpolym.2005.10.025
  • Urosevic, M. Z., Nikolic, L. B., Ilic-Stojanovic S., Zdravkovic A., and Nikolic V. D. 2020. Synthesis and characterization of poly(N-isopropylmethacrylamide-co-N-isopropylacrylamide) copolymers. Hem. Ind. 74:103–117. doi:10.2298/HEMIND190717007U
  • Fares, M. M., and A. A. Othman. 2008. Lower critical solution temperature determination of smart, thermosensitive N-isopropylacrylamide-alt-2-hydroxyethyl methacrylate copolymers: Kinetics and physical properties. J. Appl. Polym. Sci. 110:2815–2825. doi:10.1002/app.28840
  • Lanzalaco, S., and E. Armelin. 2017. Poly(N-isopropylacrylamide) and copolymers: a review on recent progresses in biomedical applications. Gels. 3:1–31. doi:10.3390/gels3040036
  • Kim, S., and J. Lee. 2021. Crystallization-based preparation method of polyurethane/poly(N-isopropylacrylamide) composite for cooling system. pk. 45:50–55. doi:10.7317/pk.2021.45.1.50
  • Sekar, M., V. Sakthi, and S. Rengaraj. 2004. Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. J. Colloid Interface Sci. 279:307–313. doi:10.1016/j.jcis.2004.06.042
  • Peruzzo, P. J., P. S. Anbinder, O. R. Pardini, C. A. Costa, C. A. Leite, F. Galembeck, and J. I. Amalvy. 2010. Polyurethane/acrylate hybrids: effects of acrylic content and thermal treatment on polymer properties. J. Appl. Polym. Sci. 116:2694–2705. doi:10.1002/app.31795
  • Tokuyama, H., H. Mori, R. Hamaguchi, and G. Kato. 2021. Prediction of the lower critical solution temperature of poly(N-isopropylacrylamide-co-methoxy triethyleneglycol acrylate) in aqueous salt solutions using support vector regression. Chem. Eng. Sci. 231:116325. doi:10.1016/j.ces.2020.116325
  • McCrary, A. L., and R. R. McDaniel. 2013. In: PubChem. ed. U. S. P. A. Publication. United States: PREFERRED TECHNOLOGY, LLC.
  • McDaniel, R. R., and A. L. McCrary. 2015. ed. U. S. Patent, Vol. US 9,040,467 B2. United States.
  • McDaniel, R. R., and A. L. McCrary. 2014. ed. U. S. Patent, Vol. US 8,763,700 B2. United States.
  • Reufer, M., P. Díaz-Leyva, I. Lynch, and F. Scheffold. 2009. Temperature-sensitive poly(N-isopropyl-acrylamide) microgel particles: a light scattering study. Eur. Phys. J. E Soft Matter. 28:165–171. doi:10.1140/epje/i2008-10387-2
  • Constantin, M., S. Bucatariu, V. Harabagiu, I. Popescu, P. Ascenzi, and G. Fundueanu. 2014. Poly(N-isopropylacrylamide-co-methacrylic acid) pH/thermo-responsive porous hydrogels as self-regulated drug delivery system. Eur. J. Pharm. Sci. 62:86–95. doi:10.1016/j.ejps.2014.05.005
  • Telin, A., L. Lenchenkova, R. Yakubov, K. Poteshkina, P. Krisanova, A. Filatov, and A. Stefantsev. 2023. Application of hydrogels and hydrocarbon-based gels in oil production processes and well drilling. Gels 9:609. doi:10.3390/gels9080609
  • Pardini, F. M., and J. I. Amalvy. 2014. Synthesis and swelling behavior of pH-responsive polyurethane/poly[2-(diethylamino)ethyl methacrylate] hybrid materials. J. Appl. Polym. Sci. 131:39799. doi:10.1002/app.39799
  • Pei, Y., J. Chen, L. Yang, L. Shi, Q. Tao, B. Hui, and J. Li. 2004. The effect of pH on the LCST of poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylic acid). J. Biomater. Sci. Polym. Ed. 15:585–594. doi:10.1163/156856204323046852
  • Mayo-Pedrosa, M., C. Alvarez-Lorenzo, and A. Concheiro. 2004. Thermorheological and glass transition properties of PNIPA/PVP and PNIPA/carbopol blends. J. Therm. Anal. Calorim. 77:681–693. doi:10.1023/B:JTAN.0000039003.07525.f0
  • Pardini, O. R., and J. I. Amalvy. 2008. FTIR, 1H-NMR spectra, and thermal characterization of water-based polyurethane/acrylic hybrids. J. Appl. Polym. Sci. 107:1207–1214. doi:10.1002/app.27188
  • Amalvy, J. I., E. J. Wanless, Y. Li, V. Michailidou, S. P. Armes, and Y. Duccini. 2004. Synthesis and characterization of novel pH-sensitive microgels based on tertiary amine methacrylates. Langmuir 20:8992–8999. doi:10.1021/la049156t
  • Faccia, P. A., and J. I. Amalvy. 2013. Synthesis, characterization, and swelling behavior of new pH-sensitive hydrogels derived from copolymers of 2-hydroxyethyl methacrylate and 2-(diisopropylamino)ethylmethacrylate. J. Appl. Polym. Sci. 127:1974–1980. doi:10.1002/app.37576
  • Salmerón Sánchez, M., L. Hanyková, M. Ilavský, and M. Monleón Pradas. 2004. Thermal transitions of poly(N-isopropylmethacrylamide) in aqueous solutions. Polymer 45:4087–4094. doi:10.1016/j.polymer.2004.04.020
  • Luengo Rico, G. 1993. Mezcla de Polímeros. Estudio de su Compatibilidad, Facultad de Ciencias Químicas. Universidad Complutense de Madrid, Servicio de Publicaciones.
  • Lopez, E., Y. P. Koh, J. A. Zapata-Hincapie, and S. L. Simon. 2022. Composition-dependent glass transition temperature in mixtures: evaluation of configurational entropy models*. Polym. Eng.Sci. 62:2435–2445. doi:10.1002/pen.26018
  • Brostow, W., R. Chiu, I. M. Kalogeras, and A. Vassilikou-Dova. 2008. Prediction of glass transition temperatures: binary blends and copolymers. Mater. Lett. 62:3152–3155. doi:10.1016/j.matlet.2008.02.008
  • Pradeep, S., H. Kharbas, L.-S. Turng, A. Avalos, J. Lawrence, and S. Pilla. 2017. Investigation of thermal and thermomechanical properties of biodegradable PLA/PBSA composites processed via supercritical Fluid-Assisted foam injection molding. Polymers (Basel) 9:22. doi:10.3390/polym9010022
  • Rozsa, C., D. Danay, N. Galego, V. Cyras, and A. Vázquez. 2004. Miscibilidad de mezclas poliméricas de polihidroxialcanoatos. Revista Iberoamericana de Polímeros 5:55–66.
  • Pardini, F. M., P. A. Faccia, O. R. Pardini, and J. I. Amalvy. 2018. Thermal and pH dual responsive polyurethane/2-(diisopropylamino)ethyl methacrylate hybrids: synthesis, characterization, and swelling behavior. Int. J. Polym. Anal. Charact. 23:207–225. doi:10.1080/1023666X.2017.1416998
  • Cervantes-Uc, J. M., J. V. Cauich-Rodríguez, W. A. Herrera-Kao, H. Vázquez-Torres, and A. Marcos-Fernández. 2008. Thermal degradation behavior of polymethacrylates containing amine side groups. Polym. Degrad. Stab. 93:1891–1900. doi:10.1016/j.polymdegradstab.2008.07.003
  • Kokufuta, M. K., S. Sato, and E. Kokufuta. 2012. LCST behavior of copolymers of N-isopropylacrylamide and N-isopropylmethacrylamide in water. Colloid Polym. Sci. 290:1671–1681. doi:10.1007/s00396-012-2706-y
  • López-Pérez, P. M., R. M. da Silva, I. Pashkuleva, F. Parra, R. L. Reis, and J. San Roman. 2010. Hydrophobic-electrostatic balance driving the LCST offset aggregation-redissolution behavior of N-alkylacrylamide-based ionic terpolymers. Langmuir 26:5934–5941. doi:10.1021/la903904t
  • Reddy, K., V. Babu, K. S. V. Krishna Rao, M. C. S. Subha, K. Rao, M. Sairam, and T. Aminabhavi. 2008. Temperature sensitive semi-IPN microspheres from sodium alginate and N-isopropylacrylamide for controlled release of 5-fluorouracil. J. Appl. Polym. Sci. 107:2820–2829. doi:10.1002/app.27305
  • Yin, Y., X. Ji, H. Dong, Y. Ying, and H. Zheng. 2008. Study of the swelling dynamics with overshooting effect of hydrogels based on sodium alginate-g-acrylic acid. Carbohydr. Polym. 71:682–689. doi:10.1016/j.carbpol.2007.07.012
  • Baldini, M., C. M. Carlevaro, L. A. Pugnaloni, and M. Sánchez. 2018. Numerical simulation of proppant transport in a planar fracture. A study of perforation placement and injection strategy. Int. J. Multiphase Flow 109:207–218. doi:10.1016/j.ijmultiphaseflow.2018.08.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.