7
Views
0
CrossRef citations to date
0
Altmetric
Articles

A comparative study of the mechanical and thermal properties of EPDM rubber/cement kiln dust composite cured by ionizing radiation

ORCID Icon, &
Pages 282-299 | Received 18 Sep 2023, Accepted 23 May 2024, Published online: 18 Jun 2024

References

  • Khozemy, E. E., H. R. Nabila, and A. Mazieda. 2022. Upcycling of waste polyethylene and cement kiln dust to produce polymeric composite sheets using gamma irradiation. Polym. Bull. 80:5183–5201.
  • Bansod, N. D., B. P. Kapgate, P. K. Maji, A. Bandyopadhyay, and C. Das. 2019. Functionalization of EPDM rubber toward better silica dispersion and reinforcement. Rubber Chem. Technol. 92:219–236. doi:10.5254/rct.18.81564
  • Mokhothu, T., A. Luyt, and M. Messori. 2014. Reinforcement of EPDM rubber with in situ generated silica particles in the presence of a coupling agent via a sol–gel route. Polym. Test. 33:97–106. doi:10.1016/j.polymertesting.2013.11.009
  • Abdelsalam, A. A., W. S. Mohamed, G. Abd El-Naeem, and S. H. El-Sabbagh. 2022. Effect of the silane coupling agent on the physicomechanical properties of EPDM/SBR/AL2O3 rubber blend nanocomposites. J. Thermoplast. Compos. Mater. 36:1811–1832. doi:10.1177/08927057211067702
  • Sombatsompop, N., S. Thongsang, T. Markpin, and E. Wimolmala. 2004. Fly ash particles and precipitated silica as fillers in rubbers. I. Untreated fillers in natural rubber and styrene–butadiene rubber compounds. J. Appl. Polym. Sci. 93:2119–2130. doi:10.1002/app.20693
  • Ren, X., and E. Sancaktar. 2019. Use of fly ash as eco-friendly filler in synthetic rubber for tire applications. J. Cleaner Prod. 206:374–382. 10.1016/j.jclepro.2018.09.202
  • Yang, S., P. Liang, X. Peng, Y. Zhou, K. Hua, W. Wu, and Z. Cai. 2018. Improvement in mechanical properties of SBR/fly ash composites by in-situ grafting-neutralization reaction. Chem. Eng. J. 354:849–855. doi:10.1016/j.cej.2018.08.112
  • Sombatsompop, N., E. Wimolmala, and T. Markpin. 2007. Fly‐ash particles and precipitated silica as fillers in rubbers. II. Effects of silica content and Si69‐treatment in natural rubber/styrene–butadiene rubber vulcanizates. J. Appl. Polym. Sci. 104:3396–3405. doi:10.1002/app.25973
  • Pangamol, P., W. Malee, R. Yujaroen, P. Sae-Oui, and C. Siriwong. 2018. Utilization of bagasse ash as a filler in natural rubber and styrene–butadiene rubber composites. Arab. J. Sci. Eng. 43:221–227. doi:10.1007/s13369-017-2859-6
  • Han, D., Y. Chen, Y. Pan, C. Wang, and D. Zhang. 2022. Research on friction and wear properties of rubber composites by adding glass fiber during mixing. Polymers (Basel) 14:2849. doi:10.3390/polym14142849
  • Morselli, D., F. Bondioli, A. S. Luyt, T. H. Mokhothu, and M. Messori. 2013. Preparation and characterization of EPDM rubber modified with in situ generated silica. J. Appl. Polym. Sci. 128:2525–2532. doi:10.1002/app.38566
  • Ibarra, L., and M. Alzorriz. 2003. Ionic elastomers based on carboxylated nitrile rubber and calcium oxide. J. Appl. Polym. Sci. 87:805–813. doi:10.1002/app.11468
  • Krainoi, A., B. Sripornsawat, P. Toh-Ae, W. Kitisavetjit, P. Pittayavinai, W. Tangchirapat, E. Kalkornsurapranee, J. Johns, and Y. Nakaramontri. 2022. Utilization of high and low calcium oxide fly ashes as the alternative fillers for natural rubber composites: a waste to wealth approach. Ind. Crops Prod. 188:115589. doi:10.1016/j.indcrop.2022.115589
  • Mahmood, N. Q., K. Marossy, and P. Baumli. 2021. Effects of nanocrystalline calcium oxide particles on mechanical, thermal, and electrical properties of EPDM rubber. Colloid Polym. Sci. 299:1669–1682. doi:10.1007/s00396-021-04888-5
  • El-Nemr, K. F., M. M. Khattab, and H. Abdel-Rahman. 2011. Effect of electron beam irradiation on Physico-Mechanical and chemical properties of NBR–PVC loaded with cement kiln dust. J. Adhes. Sci. Technol. 25:1017–1034. doi:10.1163/016942410X534975
  • Ali, H. E., S. M. Nasef, and Y. H. Gad. 2022. Remediation of astrazon blue and lerui acid brilliant blue dyes from waste solutions using amphoteric superparamagnetic nanocomposite hydrogels based on chitosan prepared by gamma rays. Carbohydr. Polym. 283:119149. doi:10.1016/j.carbpol.2022.119149
  • Kotian, R., P. P. Rao, and P. Madhyastha. 2017. X-ray diffraction analysis of hydroxyapatite-coated in different plasma gas atmosphere on Ti and Ti-6Al-4V. Eur. J. Dent. 11:438–446. doi:10.4103/ejd.ejd_100_17
  • Mitra, S., A. Ghanbari-Siahkali, P. Kingshott, S. Hvilsted, and K. Almdal. 2006. An investigation on changes in chemical properties of pure ethylene-propylene-diene rubber in aqueous acidic environments. Mater. Chem. Phys. 98:248–255. doi:10.1016/j.matchemphys.2005.09.028
  • Riba Ruiz, J.-R., T. Canals, and R. Cantero. 2017. Supervision of ethylene propylene diene M-class (EPDM) rubber vulcanization and recovery processes using attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy and multivariate analysis. Appl. Spectrosc. 71:141–151. doi:10.1177/0003702816653131
  • Kondyurin, A. 2018. EPDM rubber modified by nitrogen plasma immersion ion implantation. Materials 11:657. doi:10.3390/ma11050657
  • NIOSH 2003. US Department of Health and Human Services, Centers for Disease Control and ….
  • Wu, S., S. Zhang, R. Akram, A. Yasir, B. Wang, Z. Han, Z. Wu, and D. Wu. 2019. EPDM-based heat-shielding materials modified by hybrid elastomers of silicone or polyphosphazene. High Perform. Polym. 31:1112–1121. doi:10.1177/0954008318824861
  • Zhang, M., V. Kamavarum, and R. G. Reddy. 2003. New electrolytes for aluminum production: Ionic liquids. Jom 55:54–57. doi:10.1007/s11837-003-0211-y
  • Lemine, O. 2009. Microstructural characterisation of α-Fe2O3 nanoparticles using, XRD line profiles analysis, FE-SEM and FT-IR. Superlattices Microstruct. 45:576–582. doi:10.1016/j.spmi.2009.02.004
  • Alfannakh, H., N. Alnaim, and S. S. Ibrahim. 2023. Thermal stability and non-isothermal kinetic analysis of ethylene–propylene–diene rubber composite. Polymers (Basel) 15:1890. doi:10.3390/polym15081890
  • Mokhothu, T. H., A. S. Luyt, and M. Messori. 2014. Preparation and characterization of EPDM/silica composites prepared through non-hydrolytic sol-gel method in the absence and presence of a coupling agent. Express Polym. Lett. 8:809–822. doi:10.3144/expresspolymlett.2014.83
  • Khozemy, E. E., E. F. Salem, and A. E.-H. Ali. 2022. Radiation shielding and enhanced thermal characteristics of high-density polyethylene reinforced with Al (OH) 3/Pb2O3 for radioactive waste management. Radiat. Phys. Chem. 193:109976. doi:10.1016/j.radphyschem.2022.109976

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.