42
Views
0
CrossRef citations to date
0
Altmetric
Articles

Studies on ionic conductivity, linear and non-linear optical properties of ecofriendly methyl cellulose: sodium bromide based solid polymer blend electrolytes

, , , &
Pages 300-315 | Received 15 Mar 2024, Accepted 28 May 2024, Published online: 24 Jun 2024

References

  • Palakkathodi Kammampata, S., and V. Thangadurai. 2018. Cruising in ceramics—discovering new structures for all-solid-state batteries—fundamentals, materials, and performances. Ionics (Kiel) 24:639–660. doi: 10.1007/s11581-017-2372-7.
  • Thackeray, M. M., C. Wolverton, and E. D. Isaacs. 2012. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5:7854. doi: 10.1039/c2ee21892e.
  • C. Breitkopf, and K. Swider-Lyons, eds. 2017. Springer Handbook of Electrochemical Energy. Berlin, Heidelberg: Springer. doi: 10.1007/978-3-662-46657-5.
  • Sashmitha, K., and M. U. Rani. 2023. A comprehensive review of polymer electrolyte for lithium ion battery. Polym. Bull. 80:89–135. doi: 10.1007/s00289-021-04008-x
  • Kumar, M., T. Tiwari, and N. Srivastava. 2012. Electrical transport behaviour of bio-polymer electrolyte system: Potato starch + ammonium iodide. Carbohydr. Polym. 88:54–60. doi: 10.1016/j.carbpol.2011.11.059
  • Monisha, S., T. Mathavan, S. Selvasekarapandian, A. M. F. Benial, and M. P. Latha. 2017. Preparation and characterization of cellulose acetate and lithium nitrate for advanced electrochemical devices. Ionics 23:2697–2706. doi: 10.1007/s11581-016-1886-8.
  • Shenbagavalli, S., M. Muthuvinayagam, S. Jayanthi, and M. S. Revathy. 2021. Investigations on Al2O3 dispersed PEO/PVP based Na+ ion conducting blend polymer electrolytes. J. Mater. Sci: Mater. Electron. 32:9998–10007.doi: 10.1007/s10854-021-05658-3.
  • Li, Z., J. Fu, X. Zhou, S. Gui, L. Wei, H. Yang, H. Li, and X. Guo. 2023. Ionic conduction in polymer-based solid electrolytes. Adv. Sci. 10:2201718. doi: 10.1002/advs.202201718
  • Zhang, D., X. Meng, W. Hou, W. Hu, J. Mo, T. Yang, W. Zhang, Q. Fan, L. Liu, B. Jiang, L. Chu, and M. Li. 2023. Solid polymer electrolytes: Ion conduction mechanisms and enhancement strategies. Nano Res. Energy 2:e9120050. doi: 10.26599/NRE.2023.9120050
  • Vijayalekshmi, V., and D. Khastgir. 2017. Eco-friendly methanesulfonic acid and sodium salt of dodecylbenzene sulfonic acid doped cross-linked chitosan based green polymer electrolyte membranes for fuel cell applications. J. Memb. Sci 523:45–59. doi: 10.1016/j.memsci.2016.09.058.
  • Jayanthi, S., G. P. Kokila, S. Shenbagavalli, and B. Sundaresan. 2021. Preparation and characterization of novel potassium ion conducting nanocomposite polymer electrolytes based on PEMA. J. Elastom. Plast. 54(7):1–19. doi: 10.1177/00952443211038661.
  • Jayanthi, S., S. Shenbagavalli, M. Muthuvinayagam, and B. Sundaresan. 2022. Materials science & engineering B, effect of nano TiO2 on the thransport, structural and thermal properties of PEMA-NaI solid polymer electrolytes for energy storage devices. Mater. Sci. Eng. B 285:115942. doi: 10.1016/j.mseb.2022.115942.
  • Shuhaimi, N. E. A., N. A. Alias, S. R. Majid, and A. K. Arof. 2008. Electrical double layer capacitor with proton conducting κ-carrageenanchitosan electrolytes. Funct. Mater. Lett. 01:195–201. doi: 10.1142/S1793604708000423
  • Shen, X., J. L. Shamshina, P. Berton, G. Gurau, and R. D. Rogers. 2016. Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem. 18:53–75. doi: 10.1039/c5gc02396c.
  • Salman, Y. A. K., O. G. Abdullah, R. R. Hanna, and S. B. Aziz. 2018. Conductivity and electrical properties of chitosan - methylcellulose blend biopolymer electrolyte incorporated with lithium tetrafluoroborate. Int. J. Electrochem. Sci. 13:3185–3199. doi: 10.20964/2018.04.25.
  • Aziz, S. B., O. G. Abdullah, and S. Al-Zangana. 2019. Solid polymer electrolytes based on chitosan: NH4Tf modified by various amounts of TiO2 filler and its electrical and dielectric characteristics. Int. J. Electrochem. Sci. 14:1909–1925. doi: 10.20964/2019.02.31.
  • Kumar, K. K., M. Ravi, Y. Pavani, S. Bhavani, A. K. Sharma, and V. V. R. Narasimha Rao. 2014. Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J. Memb. Sci. 454:200–211. doi: 10.1016/j.memsci.2013.12.022
  • Aziz, S. B., E. M. A. Dannoun, R. T. Abdulwahid, M. F. Z. Kadir, M. M. Nofal, S. I. Al-Saeedi, and A. R. Murad. 2022. The study of ion transport parameters in MC-based electrolyte membranes using EIS and their applications for EDLC devices. Membranes (Basel) 12:139. doi: 10.3390/membranes12020139
  • Arora, N., V. Sharma, R. Kumar, S. Singh, R. Kumar, S. Verma, and S. Sharma. 2023. High ion conducting and thixotropic nature of water-soluble xanthan gum-based electrolytes. Bull. Mater. Sci. 46:2. doi: 10.1007/s12034-022-02840-z
  • Sharma, V., N. Arora, R. Kumar, S. Singh, and S. Verma. 2022. Effect of polyvinyl alcohol on electrical, spectroscopic and thermal properties of gum acacia-based gel electrolytes containing NaOH. Polym. Bull. 79:8865–8882. doi: 10.1007/s00289-021-03915-3
  • Sharma, V., R. Kumar, N. Arora, S. Singh, N. Sharma, A. Anand, S. K. Jain, and S. Sharma. 2020. Effect of heat treatment on thermal and mechanical stability of NaOH-doped xanthan gum-based hydrogels. J. Solid State Electrochem. 24:1337–1347. doi: 10.1007/s10008-020-04641-y
  • Darwesh, A. H. A., S. B. Aziz, and S. A. Hussen. 2022. Insights into optical band gap identification in polymer composite films based on PVA with enhanced optical properties: Structural and optical characteristics. Opt. Mater. 133:113007. doi: 10.1016/j.optmat.2022.113007.
  • Aziz, S. B., E. M. A. Dannoun, D. A. Tahir, S. A. Hussen, R. T. Abdulwahid, M. M. Nofal, R. M. Abdullah, A. M. Hussein, and I. Brevik. 2021. Synthesis of PVA/CeO2 based nanocomposites with tuned refractive index and reduced absorption edge: Structural and optical studies. Materials 14:1570. doi: 10.3390/ma14061570.
  • Abdullah, O. G., D. R. Saber, and S. A. Taha. 2015. The optical characterization of polyvinyl alcohol: Cobalt nitrate solid polymer electrolyte films. Adv. Mater. Lett. 6:153–157. doi: 10.5185/amlett.2015.5687.
  • Romanova, E., A. Melnikov, Y. Kuzutkina, V. Shiryaev, S. Guizard, and A. Mouskeftaras. 2012. Nonlinear optical properties of amorphous semiconductors. Proceedings of the 2012 International Conference on Mathematical Methods in Electromagnetic Theory, MMET, Kharkiv, UKraine, 28–30 August 2012, 521–526.
  • Urbach, F. 1953. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92:1324–1324. doi: 10.1103/PhysRev.92.1324.
  • Tahir, D. A. 2022. Effect of CuCl2 powder on the optical characterization of methylcellulose (MC) polymer composite. Alexandria Eng. J. 61:2354–2365. doi: 10.1016/j.aej.2021.06.088.
  • Sadiq, M., M. M. H. Raza, S. K. Chaurasia, M. Zulfequar, and J. Ali. 2021. Studies on flexible and highly stretchable sodium ion conducting blend polymer electrolytes with enhanced structural, thermal, optical, and electrochemical properties. J. Mater. Sci. Mater. Electron. 32:19390–19411. doi: 10.1007/s10854-021-06456-7.
  • Moss, T. S. 1985. Relations between the refractive index and energy gap of semiconductors. Phys. Status Solidi (B) 131:415–427. doi: 10.1002/pssb.2221310202.
  • Reddy, R. R., K. R. Gopal, K. Narasimhulu, L. S. S. Reddy, K. R. Kumar, G. Balakrishnaiah, and M. R. Kumar. 2009. Interrelationship between structural, optical, electronic and elastic properties of materials. J. Alloys Compd. 473:28–35. doi: 10.1016/j.jallcom.2008.06.037
  • Anani, M., C. Mathieu, S. Lebid, Y. Amar, Z. Chama, and H. Abid. 2008. Model for calculating the refractive index of a III–V semiconductor. Comput. Mater. Sci. 41:570–575. doi: 10.1016/j.commatsci.2007.05.023.
  • Singh, J. K., S. K. Mandal, and G. Banerjee. 2021. Refractive index of different perovskite materials. J. Mater. Res. 36:1773–1793. doi: 10.1557/s43578-021-00257-8.
  • Hervé, P., and L. K. Vandamme. 1994. General relation between refractive index and energy gap in semiconductors. Infrared Phys. 35:609–615. doi: 10.1016/1350-4495(94)90026-4
  • Ravindra, N. M., S. Auluck, and V. K. Srivastava. 1979. On the penn gap in semiconductors. Phys. Status Solidi (B) 93:K155–K160. doi: 10.1002/pssb.2220930257
  • Abdel-Baset, T., M. Elzayat, and S. Mahrous. 2016. Characterization and optical and dielectric properties of polyvinyl chloride/silica nanocomposites films. Int. J. Polym. Sci. 2016:1–13. doi: 10.1155/2016/1707018.
  • Parthasarathy, V., R. S. Nakandhrakumar, S. Mahalakshmi, P. Senthil Kumar, and B. Sundaresan. 2020. Structural, optical, thermal and non-isothermal decomposition behavior of PMMA nanocomposites. J. Inorg. Organomet. Polym. 30:2998–3013. doi: 10.1007/s10904-020-01453-5.
  • Dabhade, R. V., D. S. Bodas, and S. A. Gangal. 2004. Plasma-treated polymer as humidity sensing material - a feasibility study. Sens. Actuat. B Chem. 98:37–40. doi: 10.1016/j.snb.2003.08.020
  • Wemple, S. H., and M. DiDomenico. 1969. Oxygen-octahedra ferroelectrics. II. Electro-optical and nonlinear-optical device applications. J. Appl. Phys. 40:735–752. doi: 10.1063/1.1657459.
  • Abdullah, O. G., D. A. Tahir, S. S. Ahmad, and H. T. Ahmad. 2013. Optical properties of PVA:CdCl2.H2O polymer electrolytes. IOSR-JAP. 4:52–57. doi: 10.9790/4861-0435257
  • Ali, H. E., M. M. A-Aziz, A. M. Nawar, H. Algarni, H. Y. Zahran, I. S. Yahia, and Y. Khairy. 2021. Structural, electrical, and nonlinear optical performance of PVAL embedded with Li+-ions for multifunctional devices. Polym. Adv. Technol. 32:1011–1025. doi: 10.1002/pat.5149.
  • Frumar, M., J. Jedelský, B. Frumarová, T. Wágner, and M. Hrdlička. 2003. Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J. Non-Cryst. Solids 326–327:399–404. doi: 10.1016/S0022-3093(03)00446-0.
  • Divya, S., V. P. N. Nampoori, P. Radhakrishnan, and A. Mujeeb. 2014. Evaluation of nonlinear optical parameters of TiN/PVA nanocomposite—a comparison between semi empirical relation and Z-scan results. Curr. Appl. Phys. 14:93–98. doi: 10.1016/J.CAP.2013.10.011.
  • Gündüz, B. 2015. Optical properties of poly[2-methoxy-5-(30,70-dimethyloctyloxy)-1,4-phenylenevinylene] light-emitting polymer solutions:effects of molarities and solvents. Polym. Bull. 72:3241–3267. doi: 10.1007/s00289-015-1464-7.
  • Kader, M. H. A., A. A. H. Mohamed, and M. B. Mohamed. 2023. Effect of laser irradiation on structural, linear and nonlinear optical characteristics of PVP/CMC/ZnS–NiO blends. J. Laser Appl. 35:022026. doi: 10.2351/7.0000978.
  • Abiddin, J. F. B. Z., and A. H. Ahmad. 2015. Conductivity study and Fourier transform infrared (FTIR) characterization of methyl cellulose solid polymer electrolyte with sodium iodide conducting ion. AIP Conference Proceedings 1674: 020026. doi: 10.1063/1.4928844.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.