9
Views
0
CrossRef citations to date
0
Altmetric
Articles

Mechanical and water absorption characterization of rice husk and coconut coir reinforced biochar composites

ORCID Icon
Pages 398-409 | Received 25 May 2024, Accepted 27 Jun 2024, Published online: 15 Jul 2024

References

  • Zhao, R., B. Wang, B. K. G. Theng, P. Wu, F. Liu, X. Lee, M. Chen, and J. Sun. 2021. Fabrication and environmental applications of metal-containing solid waste/biochar composites: a review. Sci. Total Environ. 799:149295. doi:10.1016/j.scitotenv.2021.149295.
  • Wang, L., Y. S. Ok, D. C. W. Tsang, D. S. Alessi, J. Rinklebe, H. Wang, O. Mašek, R. Hou, D. O’Connor, and D. Hou. 2020. New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use Manag. 36:358–386. doi:10.1111/sum.12592.
  • Sun, Y., T. Wang, X. Sun, L. Bai, C. Han, and P. Zhang. 2021. The potential of biochar and lignin-based adsorbents for wastewater treatment: Comparison, mechanism, and application—a review. Ind. Crops Prod. 166:113473. doi:10.1016/j.indcrop.2021.113473
  • Sun, Y., F. Yu, C. Han, C. Houda, M. Hao, and Q. Wang. 2022. Research progress on adsorption of arsenic from water by modified biochar and its mechanism: a review. Water 14:1691. doi:10.3390/w14111691
  • Sun, Y., T. Wang, C. Han, X. Lv, L. Bai, X. Sun, and P. Zhang. 2022. Facile synthesis of Fe-modified lignin-based biochar for ultra-fast adsorption of methylene blue: Selective adsorption and mechanism studies. Bioresour. Technol. 344:126186. doi:10.1016/j.biortech.2021.126186
  • Ogunsona, E. O., A. Codou, M. Misra, and A. K. Mohanty. 2018. Thermally stable pyrolytic biocarbon as an effective and sustainable reinforcing filler for polyamide bio-composites fabrication. J. Polym. Environ. 26:3574–3589. doi:10.1007/s10924-018-1232-5
  • Das, O., A. K. Sarmah, and D. Bhattacharyya. 2015. A sustainable and resilient approach through biochar addition in wood polymer composites. Sci. Total Environ. 512-513:326–336. doi:10.1016/j.scitotenv.2015.01.063
  • Das, O., D. Bhattacharyya, and A. K. Sarmah. 2016. Sustainable eco–composites obtained from waste derived biochar: a consideration in performance properties, production costs, and environmental impact. J. Clean. Prod. 129:159–168. doi:10.1016/j.jclepro.2016.04.088
  • Ogunsona, E. O., M. Misra, and A. K. Mohanty. 2017. Influence of epoxidized natural rubber on the phase structure and toughening behavior of biocarbon reinforced nylon 6 biocomposites. RSC Adv. 7:8727–8739. doi:10.1039/C6RA27177D
  • Das, O., D. Bhattacharyya, D. Hui, and K.-T. Lau. 2016. Mechanical and flammability characterisations of biochar/polypropylene biocomposites. Compos. B Eng. 106:120–128. doi:10.1016/j.compositesb.2016.09.020.
  • Khan, A., P. Savi, S. Quaranta, M. Rovere, M. Giorcelli, A. Tagliaferro, C. Rosso, and C. Q. Jia. 2017. Low-cost carbon fillers to improve mechanical properties and conductivity of epoxy composites. Polymers. (Basel) 9:642. doi:10.3390/polym9120642.
  • Bai, J. B., and A. Allaoui. 2003. Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation. Compos. A Appl. Sci. Manuf. 34:689–694. doi:10.1016/S1359-835X(03)00140-4.
  • Liang, J. Z., R. K. Y. Li, and S. C. Tjong. 1998. Morphology and tensile properties of glass bead filled low density polyethylene composites. Polym. Test 16:529–548. doi:10.1016/S0142-9418(97)00017-2.
  • Das, C., S. Tamrakar, A. Kiziltas, and X. Xie. 2021. Incorporation of biochar to improve mechanical, thermal and electrical properties of polymer composites. Polymers. (Basel) 13:2663. doi:10.3390/polym13162663.
  • Arjmandi, R., A. Hassan, K. Majeed, and Z. Zakaria. 2015. Rice husk filled polymer composites. Int. J. Polym. Sci. 2015:1–32. doi:10.1155/2015/501471.
  • Kayaisang, S., S. Saikrasun, and T. Amornsakchai. 2013. Potential use of recycled PET in comparison with liquid crystalline polyester as a dual functional additive for enhancing heat stability and reinforcement for high density polyethylene composite fibers. J. Polym. Environ. 21:191–206. doi:10.1007/s10924-012-0446-1
  • Lai, C. Y., S. M. Sapuan, M. Ahmad, N. Yahya, and K. Z. H. M. Dahlan. 2005. Mechanical and electrical properties of coconut coir fiber-reinforced polypropylene composites. Polym. - Plast. Technol. Eng. 44:619–632. doi:10.1081/PTE-200057787.
  • Singh, C. P., R. V. Patel, M. F. Hasan, A. Yadav, V. Kumar, and A. Kumar. 2021. Fabrication and evaluation of physical and mechanical properties of jute and coconut coir reinforced polymer matrix composite. Mater. Today Proc. 38:2572–2577. doi:10.1016/j.matpr.2020.07.684.
  • Srivastava, S., and S. K. Sarangi. 2023. Investigation of mechanical properties and long-term efficacy of chitosan-reinforced bamboo and nano bio-silica-reinforced composite materials for dental implants. Mech. Adv. Mater. Struct. 0:1–11. doi:10.1080/15376494.2023.2286632.
  • Widiastuti, I., Y. R. Pratiwi, and D. N. Cahyo. 2020. A study on water absorption and mechanical properties in epoxy-bamboo laminate composite with varying immersion temperatures. Open Eng. 10:814–819. doi:10.1515/eng-2020-0091.
  • Zhu, S., Y. Guo, Y. Chen, and S. Liu. 2020. Low water absorption, high-strength polyamide 6 composites blended with sustainable bamboo-based biochar. Nanomaterials 10:1367. doi:10.3390/nano10071367.
  • Shahapurkar, K., G. Gebremaryam, G. Kanaginahal, S. Ramesh, N.-N. Nik-Ghazali, V. Chenrayan, M. E. M. Soudagar, Y. Fouad, and M. A. Kalam. 2024. An experimental study on the hardness, inter laminar shear strength, and water absorption behavior of Habeshian banana fiber reinforced composites. J. Nat. Fibers 21:1–17. doi:10.1080/15440478.2024.2338930.
  • Arumugam, S., J. Kandasamy, A. U. Md Shah, M. T. Hameed Sultan, S. N. A. Safri, M. S. Abdul Majid, A. A. Basri, and F. Mustapha. 2020. Investigations on the mechanical properties of glass fiber/sisal fiber/chitosan reinforced hybrid polymer sandwich composite scaffolds for bone fracture fixation applications. Polymers. (Basel) 12:1501. doi:10.3390/polym12071501.
  • Srivastava, S., and S. K. Sarangi. 2024. A relationship of tightening torque and initial load of dental implant of nano bio-silica and bamboo fiber-reinforced bio-composite material. Comput. Methods Biomech. Biomed. Engin. 1–15. Advance online publication. doi:10.1080/10255842.2024.2320750
  • Srivastava, S., and S. K. Sarangi. 2024. Fabrication and testing of nano bio-silica, hemp, and bamboo fibre-Reinforced chitosan bio-composite material. J. J. Mech. Ind. Eng. 1:401–410.
  • Srivastava, S., S. K. Sarangi, and S. P. Singh. 2024. Water absorptivity and porosity investigation of nano bio-silica, hemp, and bamboo fibre-reinforced chitosan bio-composite material. Silicon. Advance online publication. doi:10.1007/s12633-024-03027-3.
  • Srivastava, S., S. K. Sarangi, and S. P. Singh. 2024. Investigation of water absorption and porosity of nano-biosilica, jute, and bamboo fiber-reinforced chitosan biocomposite materials. Russ. Phys. J. Advance online publication. doi:10.1007/s11182-024-03190-5.
  • Kanaginahal, G. M., S. Hebbar, K. Shahapurkar, M. A. Alamir, V. Tirth, I. M. Alarifi, M. Sillanpaa, and H. C. A. Murthy. 2023. Leverage of weave pattern and composite thickness on dynamic mechanical analysis, water absorption and flammability response of bamboo fabric/epoxy composites. Heliyon 9:e12950. doi:10.1016/j.heliyon.2023.e12950.
  • Li, S., Y. Xu, X. Jing, G. Yilmaz, D. Li, and L.-S. Turng. 2020. Effect of carbonization temperature on mechanical properties and biocompatibility of biochar/ultra-high molecular weight polyethylene composites. Compos. B Eng. 196:108120. doi:10.1016/j.compositesb.2020.108120
  • Zhao, Y., S. A. Qamar, M. Qamar, M. Bilal, and H. M. N. Iqbal. 2021. Sustainable remediation of hazardous environmental pollutants using biochar-based nanohybrid materials. J. Environ. Manage. 300:113762. doi:10.1016/j.jenvman.2021.113762
  • Lepak-Kuc, S., M. Kiciński, P. P. Michalski, K. Pavlov, M. Giorcelli, M. Bartoli, and M. Jakubowska. 2021. Innovative biochar-based composite fibres from recycled material. Materials (Basel) 14:5304. doi:10.3390/ma14185304
  • Sandler, J., P. Werner, M. S. P. Shaffer, V. Demchuk, V. Altsta, and A. H. Windle. 2002. Carbon-nanofibre-reinforced poly (ether ether ketone) composites. Compos. Appl. Sci. Manuf. 33:1033–1039.
  • Shesan, O. J., A. C. Stephen, A. G. Chioma, R. Neerish, and S. E. Rotimi. 2019. Fiber-matrix relationship for composites preparation. In Renewable and Sustainable Composites, eds. A. B. Pereira and F. A. O. Fernandes. Rijeka: IntechOpen.
  • Ferreira, F. V., W. Franceschi, B. R. C. Menezes, A. F. Biagioni, A. R. Coutinho, and L. S. Cividanes. “ 2019. Chapter one - synthesis, characterization, and applications of carbon nanotubes. In Carbon-Based Nanofillers and Their Rubber Nanocomposites, eds. S. Yaragalla, R. Mishra, S. Thomas, N. Kalarikkal, and H. J. Maria, pp. 1–45. Elsevier. doi:10.1016/B978-0-12-813248-7.00001-8.
  • Rendas, P., L. Figueiredo, M. Geraldo, C. Vidal, and B. A. Soares. 2023. Improvement of tensile and flexural properties of 3D printed PEEK through the increase of interfacial adhesion. J. Manuf. Process 93:260–274. doi:10.1016/j.jmapro.2023.03.024.
  • Di Palma, P., M. Leone, M. Russo, A. Iadicicco, G. Cavaccini, M. Consales, A. Cusano, and S. Campopiano. 2023. Bonding quality monitoring of carbon fiber reinforced plastics bonded structures by fiber Bragg gratings. Opt. Laser Technol. 161:109119. doi:10.1016/j.optlastec.2023.109119.
  • Kanaginahal, G. M., H. S. Hebbar, and S. M. Kulkarni. 2019. Influence of weave pattern and composite thickness on mechanical properties of bamboo/epoxy composites. Mater. Res. Express 6:125334. doi:10.1088/2053-1591/ab5a90.
  • Wu, J. G., Y. Z. Xu, C. W. Sun, R. D. Soloway, D. F. Xu, Q. G. Wu, K. H. Sun, S. F. Weng, and G. X. Xu. 2001. Distinguishing malignant from normal oral tissues using FTIR fiber-optic techniques. Biopolymers 62:185–192. doi:10.1002/bip.1013.
  • Nandiyanto, A. B. D., R. Oktiani, and R. Ragadhita. 2019. How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. Technol. 4:97–118. doi:10.17509/ijost.v4i1.15806.
  • Dovbeshko, G. I., N. Y. Gridina, E. B. Kruglova, and O. P. Pashchuk. 2000. FTIR spectroscopy studies of nucleic acid damage. Talanta 53:233–246. doi:10.1016/s0039-9140(00)00462-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.