17
Views
0
CrossRef citations to date
0
Altmetric
Articles

Sustainable starch-based bioplastics reinforced with carob filler: characterization and biodegradability assessments

ORCID Icon, ORCID Icon &
Pages 410-428 | Received 16 Jan 2024, Accepted 03 Jul 2024, Published online: 17 Jul 2024

References

  • Beltrán-Sanahuja, A., N. Casado-Coy, L. Simó-Cabrera, and C. Sanz-Lázaro. 2020. Monitoring polymer degradation under different conditions in the marine environment. Environ. Pollut. 259:113836. doi:10.1016/j.envpol.2019.113836.
  • Ryan, P. G. 2016. Ingestion of plastics by marine organisms. In Hazardous Chemicals Associated with Plastics in the Marine Environment. Handbook of Environmental Chemistry, eds. H. Takada and H. K. Karapanagioti, pp. 1–32. Berlin: Springer.
  • Thushari, G. G. N., and J. D. M. Senevirathna. 2020. Plastic pollution in the marine environment. Heliyon 6:e04709. doi:10.1016/j.heliyon.2020.e04709.
  • Simó-Cabrera, L., S. García-Chumillas, N. Hagagy, A. Saddiq, H. Tag, S. Selim, H. AbdElgawad, A. Arribas Agüero, F. Monzó Sánchez, V. Cánovas, C. Pire, and R. M. Martínez-Espinosa. 2021. Haloarchaea as cell factories to produce bioplastics. Mar Drugs 19: 159. doi:10.3390/md19030159.
  • Anastasopoulou, A., and T. Fortibuoni. 2019. Impact of plastic pollution on marine life in the Mediterranean Sea. In Plastics in the Aquatic Environment - Part I, Vol. 111, eds. F. Stock, G. Reifferscheid, N. Brennholt, and E. Kostianaia, pp. 135–196. Cham: Springer International Publishing.
  • Selvamurugan, M., and P. Sivakumar. 2019. Bioplastics - An eco-friendly alternative to petrochemical plastics. Curr. World Environ. 14: 49–59. doi:http://dx.doi.org/10.12944/CWE.14.1.07.
  • Waterschoot, J., S. V. Gomand, E. Fierens, and J. A. Delcour. 2014. Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch Stärke 67:14–29. doi:10.1002/star.201300238.
  • David Chena, A., Š. Evžen, U. Pavel, and M. Eva. 2018. Starch nanoparticles – two ways of their preparation. Czech. J. Food. Sci. 36:133–138. doi:10.17221/371/2017-CJFS
  • Moad, G. 2011. Chemical modification of starch by reactive extrusion. Prog. Poly. Sci. 36:218–237. doi:10.1016/j.progpolymsci.2010.11.002
  • Ribba, L., N. L. García, N. D. Accorso, and S. Goyanes. 2017. Chapter 3, Disadvantages of starch-based materials, feasible alternatives in order to overcome these limitations. In Starch-Based Materials in Food Packaging, eds. M. A. Villar et al., pp. 37–76. London: Elsevier.
  • Bharath, K. N., and S. Basavarajappa. 2016. Applications of biocomposite materials based on natural fibers from renewable resources: a review. Sci. Eng. Compos. Mater. 23:123–133. doi:10.1515/secm-2014-0088
  • Das Lala, S., A. B. Deoghare, and S. Chatterjee. 2018. Effect of reinforcements on polymer matrix bio-composites – an overview. Sci. Eng. Compos. Mater. 25:1039–1058. doi:10.1515/secm-2017-0281.
  • Krishnan Manthira Moorthy, M., S. Gurusamy, B. Pandiarajan, B. Balasubramanian, N. Pandiarajan, I. Suyambulingam, S. Mavinkere Rangappa, and S. Siengchin. 2024. Effect of alkali-treated Putranjiva roxburghii seed shell filler on physico-chemical, thermal, mechanical, and barrier properties of polyvinyl alcohol-based biofilms. Vinyl. Addit. Technol. 30:1010–1024. doi:10.1002/vnl.22101
  • Arpitha, G. R., and B. Yogesha. 2017. An overview on mechanical property evaluation of natural fiber reinforced polymers. Mater. Today Proc. 4: 2755–2760. doi:10.1016/j.matpr.2017.02.153.
  • Kaliraj, M., P. Narayanasamy, B. Balavairavan, and P. Balasundar. 2023. Fabrication and testing of crop waste Ceiba pentandra shell powder reinforced biodegradable composite films. ACS Omega. 8:42762–42775. doi:10.1021/acsomega.3c05577
  • Gautam, S., B. Sharma, and P. Jain. 2021. Green natural protein isolate based composites and nanocomposites: a review. Polym. Test. 99:106626. doi:10.1016/j.polymertesting.2020.106626
  • Goulas, V., L. Hadjivasileiou, A. Primikyri, C. Michael, G. Botsaris, A. G. Tzakos, and I. P. Gerothanassis. 2019. Valorization of carob fruit residues for the preparation of novel Bi-Functional polyphenolic coating for food packaging applications. Molecules 24:3162. doi:10.3390/molecules24173162
  • Pollard, M., R. Kelly, C. Wahl, P. Fischer, E. Windhab, B. Eder, and R. Amado. 2007. Investigation of equilibrium solubility of a carob galactomannan. Food Hydrocoll. 21:683–692. http://dx.doi.org/10.1016/j.foodhyd.2006.08.010
  • Fidan, H., S. Stankov, N. Petkova, Z. Petkova, A. Iliev, M. Stoyanova, T. Ivanova, N. Zhelyazkov, S. Ibrahim, A. Stoyanova, and S. Ercisli. 2020. Evaluation of chemical composition, antioxidant potential and functional properties of carob (Ceratonia siliqua L.) seeds. J. Food Sci. Technol. 57:2404–2413. doi:10.1007/s13197-020-04274-z
  • Battle, I., and J. Tous. 1997. Carob Tree. Ceratonia siliqua L. Promoting the Conservation and Use of Under-Utilised and Neglected Crops 17. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute., Rome, Italy, 93.
  • Oluwasina, O. O., T. Falola, J. O. Wahab, and B. N. Idahagbon. 2017. Enhancement of physical and mechanical properties of Dioscorea dumetorum starch films with dialdehyde starch solution. Starch StäRke. 70:1700148. doi:10.1002/star.201700148
  • Hazrol, M. D., S. M. Sapuan, E. S. Zainudin, N. I. A. Wahab, and R. A. Ilyas. 2022. Effect of kenaf fibre as reinforcing fillers in corn starch-based biocomposite film. Polymers 14:1590. 10.3390/polym14081590
  • Oluwasina, O. O., B. P. Akinyele, S. J. Olusegun, O. O. Oluwasina, and N. D. S. Mohallem. 2021. Evaluation of the effects of additives on the properties of starch-based bioplastic film. SN Appl. Sci. 3:421. doi:10.1007/s42452-021-04433-7.
  • Segal, L., J. J. Creely, A. E. Martin, and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res. J. 29:786–794. doi:http://dx.doi.org/10.1177/004051755902901003.
  • Guemmour, H., and A. Benaboura. 2013. Synthesis and characterization of aliphatic-aromatic copolyesters based on cis-1,3-indanediol. Polym. Sci. Ser. B. 55:280–285. 10.1134/S1560090413050084.
  • Gani, M. A., A. S. Budiatin, M. L. A. D. Lestari, F. A. Rantam, C. Ardianto, and J. Khotib. 2022. Fabrication and characterization of submicron-scale bovine hydroxyapatite: a top-down approach for a natural biomaterial. Materials (Basel) 15:2324. 10.3390/ma15062324
  • Tsang, Y. F., V. Kumar, P. Samadar, Y. Yang, J. Lee, Y. S. Ok, H. Song, K.-H. Kim, E. E. Kwon, and Y. J. Jeon. 2019. Production of bioplastic through food waste valorization. Environ. Int. 127:625–644. doi:10.1016/j.envint.2019.03.076.
  • Khotsaeng, N., W. Simchuer, T. Imsombut, and P. Srihanam. 2023. Effect of glycerol concentrations on the characteristics of cellulose films from cattail (typha angustifolia L.) flowers. Polymers. (Basel) 15:4535. doi:10.3390/polym15234535
  • Versino, F., and M. A. García. 2014. Cassava (Manihot esculenta) starch films reinforced with natural fibrous filler. Ind. Crops Prod. 58:305–314. http://dx.doi.org/10.1016/j.indcrop.2014.04.040.
  • Chang, P., P. B. Chea, and C. C. Seow. 2000. Plasticizing–antiplasticizing effects of water on physical properties of cassava starch films in the glassy state. J. Food Technol. 65:445–451. doi:10.1111/j.1365-2621.2000.tb16025.x
  • Shafqat, A., N. Al-Zaqri, A. Tahir, and A. Alsalme. 2021. Synthesis and characterization of starch based bioplatics using varying plant-based ingredients, plasticizers and natural fillers. Saudi J. Biol. Sci. 28:1739–1749. doi:10.1016/j.sjbs.2020.12.015.
  • Abdullah, A. H. D., O. D. Putri, A. K. Fikriyyah, R. C. Nissa, and S. Intadiana. 2020. Effect of microcrystalline cellulose on characteristics of cassava starch-based bioplastic. Polym.-Plast Tech. Mat. 59:1250–1258. doi:10.1080/25740881.2020.1738465.
  • Onyeaka, H., K. Obileke, G. Makaka, and N. Nwokolo. 2022. Current research and applications of starch-based biodegradable films for food packaging. Polymers (Basel) 14:1126. doi:10.3390/polym14061126
  • Ibrahim, M. I. J., S. M. Sapuan, E. S. Zainudin, M. Y. M. Zuhri, and A. Edhirej. 2019. 2. Corn (maize)- its fibers, polymers, composites, and applications: a review. In Biodegradable Composites: Materials, Manufacturing and Engineering, eds. Kaushik Kumar and J. Paulo Davim, pp. 13–36. Berlin, Boston: De Gruyter. doi:10.1515/9783110603699-002
  • Ibrahim, M. I. J., S. M. Sapuan, E. S. Zainudin, and M. Y. M. Zuhri. 2019. Extraction, chemical composition, and characterization of potential lignocellulosic biomasses and polymers from corn plant parts. BioResources. 14: 6485–6500. doi:10.15376/biores.14.3.6485-6500.
  • Ahmad, M., B. Ashraf, A. Gani, and A. Gani. 2018. Microencapsulation of saffron anthocyanins using β-D-glucan and β-cyclodextrin: Microcapsule characterization, release behavior & antioxidant potential during in-vitro digestion. Int. J. Biol. Macromol. 109:435–442. doi:10.1016/j.ijbiomac.2017.11.122.
  • El Achaby, M., Z. Kassab, A. Aboulkas, C. Gaillard, and A. Barakat. 2018. Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites. Int. J. Biol. Macromol. 106:681–691. doi:10.1016/j.ijbiomac.2017.08.067
  • Pongsuwan, C., P. Boonsuk, D. Sermwittayawong, P. Aiemcharoen, J. Mayakun, and K. Kaewtatip. 2022. Banana inflorescence waste fiber: an effective filler for starch-based bioplastics. Ind. Crops Prod. 180:114731. doi:10.1016/j.indcrop.2022.114731
  • Prachayawarakorn, J., S. Chaiwatyothin, S. Mueangta, and A. Hanchana. 2013. Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites. Mater. Des. 47:309–315. doi:10.1016/j.matdes.2012.12.012
  • Park, J. W., S. S. Im, S. H. Kim, and Y. H. Kim. 2000. Biodegradable polymer blends of poly (L-lactic acid) and gelatinized starch. Polym. Engin. Sci. 40:2539–2550. doi:10.1002/pen.11384.
  • Deeyai, P., M. Suphantharika, R. Wongsagonsup, and S. Dangtip. 2013. Characterization of modified tapioca starch in atmospheric argon plasma under diverse humidity by FTIR spectroscopy. Chin. Phys. Lett. 30:018103. doi:10.1088/0256-307X/30/1/018103
  • Coates, J. 2000. Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry, pp. 10815–10837. Chichester: John Wiley & Sons Ltd.
  • Cheng, G., M. Zhou, Y.-J. Wei, F. Cheng, and P.-X. Zhu. 2017. Comparison of mechanical reinforcement effects of cellulose nanocrystal, cellulose nanofiber, and microfibrillated cellulose in starch composites. Polym. Compos. 40:E365–E372. doi:10.1002/pc.24685
  • Zhang, C., S. S. Nair, H. Chen, N. Yan, R. Farnood, and F. Li. 2020. Thermally stable, enhanced water barrier, high strength starch bio-composite reinforced with lignin containing cellulose nanofibrils. Carbohydr. Polym. 230:115626. doi:10.1016/j.carbpol.2019.115626.
  • García, N. L., L. Ribba, A. Dufresne, M. I. Aranguren, and S. Goyanes. 2009. Physico-Mechanical properties of biodegradable starch nanocomposites. Macro. Mater. Eng. 294:169–177. doi:10.1002/mame.200800271
  • Ma, X., J. Yu, and J. F. Kennedy. 2005. Studies on the properties of natural fibers-reinforced thermoplastic starch composites. Carbohydr. Polym. 62:19–24. doi:10.1016/j.carbpol.2005.07.015.
  • Edhirej, A., S. M. Sapuan, M. Jawaid, and N. I. Zahari. 2016. Effect of various plasticizers and concentration on the physical, thermal, mechanical, and structural properties of cassava-starch-based films. Starch-Stärke 69:1–11. 10.1002/star.201500366.
  • Marichelvam, M. K., M. Jawaid, and M. Asim. 2019. Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers 7: 32. doi:10.3390/fib7040032.
  • Xu, M., J. Wang, L. Zhang, Q. Wang, W. Liu, Y. An, L. Hao, C. Wang, Z. Wang, and Q. Wu. 2022. Construction of hydrophilic hypercrosslinked polymer based on natural kaempferol for highly effective extraction of 5-nitroimidazoles in environmental water, honey and fish samples. J. Hazard. Mater. 429:128288. doi:10.1016/j.jhazmat.2022.128288.
  • Brebu, M. 2020. Environmental degradation of plastic composites with natural fillers—a review. Polymers 12:166. doi:10.3390/polym12010166.
  • Podshivalov, A., M. Zakharova, E. Glazacheva, and M. Uspenskaya. 2017. Gelatin/potato starch edible biocomposite films: correlation between morphology and physical properties. Carbohydr. Polym. 157:1162–1172. doi:10.1016/j.carbpol.2016.10.079.
  • Bai, W., N. P. Vidal, L. Roman, G. Portillo-Perez, and M. M. Martinez. 2023. Preparation and characterization of self-standing biofilms from compatible pectin/starch blends: Effect of pectin structure. Int. J. Biol. Macromol. 251:126383. doi:10.1016/j.ijbiomac.2023.126383.
  • Mohanty, A. K., M. Misra, and G. Hinrichsen. 2000. Biofibres, biodegradable polymers and biocomposites: an overview. Macromol. Mater. Eng. 276-277:1–24. doi:10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.