57
Views
1
CrossRef citations to date
0
Altmetric
The HKIE Outstanding Paper Award for Young Engineers/Researchers 2016

Gas-enhanced operation and stepwise organic stressing as a new alternative in realising successful sludge granulation in high-rate anaerobic bioreactor for wastewater treatment

, &
Pages 222-229 | Received 15 Mar 2016, Accepted 14 Jul 2016, Published online: 16 Dec 2016

References

  • Lettinga G. The route of anaerobic waste (water) treatment toward global acceptance. Environ Anaerobic Techn: Appl New Developments. 2010: p. 1–15. doi: 10.1142/9781848165434_0001
  • Lettinga G, Pol LH, Koster IW, et al. High-rate anaerobic waste-water treatment using the UASB reactor under a wide range of temperature conditions. Biotechnol Genet Eng Rev. 1984;2:253–284. doi: 10.1080/02648725.1984.10647801
  • McCarty PL. The development of anaerobic treatment and its future. Water Sci Technol. 2001;44:149–156.
  • Kujawa-Roeleveld K, Zeeman G. Anaerobic treatment in decentralized and source-separation-based sanitation concepts. Rev Environ Sci Bio/Technol. 2006;5:115–139. doi: 10.1007/s11157-005-5789-9
  • Van Lier JB, Mahmoud N, Zeeman G. Anaerobic wastewater treatment. Biological wastewater treatment: principle, modelling and design. London: IWA Publishing; 2008, 415–456.
  • Noyola A, Moreno G. Granule production from raw waste activated sludge. Water Sci Technol. 1994;30:339–346.
  • Batstone DJ, Keller J. Variation of bulk properties of anaerobic granules with wastewater type. Water Res. 2001;35:1723–1729. doi: 10.1016/S0043-1354(00)00446-2
  • Liu Y, Xu HL, Show KY, et al. Anaerobic granulation technology for wastewater treatment. World J Microbiol Biotechnol. 2002;18:99–113. doi: 10.1023/A:1014459006210
  • Young JC, McCarty PL. The anaerobic filter for waste treatment. J (Water Pollut Control Federation). 1969;41:160–173.
  • Schmidt JE, Ahring BK. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol Bioeng. 1996;49:229–246. doi: 10.1002/(SICI)1097-0290(19960205)49:3<229::AID-BIT1>3.0.CO;2-M
  • McHugh S, O'reilly C, Mahony T, et al. Anaerobic granular sludge bioreactor technology. Rev Environ Sci Biotechnol. 2003;2:225–245. doi: 10.1023/B:RESB.0000040465.45300.97
  • Hulshoff Pol LW, de Castro Lopes SI, Lettinga G, et al. Anaerobic sludge granulation. Water Res. 2004;38:1376–1389. doi: 10.1016/j.watres.2003.12.002
  • Tay JH, Show KY, Lee DJ, et al. Anaerobic granulation and granular sludge reactor systems. Environ Anaerobic Techn: Appl New Developments. 2010; p. 113–125. doi: 10.1142/9781848165434_0006
  • Subramanyam, R. Physicochemical and morphological characteristics of granular sludge in upflow anaerobic sludge blanket reactors. Environ Eng Sci. 2013;30:201–212. doi: 10.1089/ees.2012.0347
  • Van Lier JB, Van der Zee FP, Frijters CTMJ, et al. Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment. Rev Environ Sci Biotechnol 2015;14:681–702. doi: 10.1007/s11157-015-9375-5
  • Heertjes PM, Van Der Meer RR. Dynamics of liquid flow in an up-flow reactor-used for anaerobic treatment of wastewater. Biotechnol Bioeng. 1978;20:1577–1594. doi: 10.1002/bit.260201007
  • Heertjes PM, Kujivenhoven LI, Van Der Meer RR. Fluid flow pattern in upflow reactors for anaerobic treatment of beet sugar factory wastewater. Biotechnol Bioeng. 1982;24:443–459. doi: 10.1002/bit.260240214
  • Bolle WL, Van Breugel J, Van Eybergen GC, et al. An integral dynamic model for the UASB reactor. Biotechnol Bioeng. 1986;28:1621–1636. doi: 10.1002/bit.260281106
  • Alphenaar PA, Visser A, Lettinga G. The effect of liquid upward velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a high sulphate content. Bioresource Technol. 1993;43:249–258. doi: 10.1016/0960-8524(93)90038-D
  • Arcand Y, Guiot SR, Desrochers M, et al. Impact of the reactor hydrodynamics and organic loading on the size and activity of anaerobic granules. The Chem Eng J and Biochem Eng J. 1994;56:B23–B35. doi: 10.1016/0923-0467(94)87028-4
  • O'flaherty V, Lens PNL, De Beer D, et al. Effect of feed composition and upflow velocity on aggregate characteristics in anaerobic upflow reactors. Appl Microbiol Biotechnol 1997;47:102–107. doi: 10.1007/s002530050896
  • Alves MM, Cavaleiro AJ, Ferreira EC, et al. Characterisation by image analysis of anaerobic sludge under shock conditions. 2000.
  • Wang J, Lu H, Chen GH, et al. A novel sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process for saline wastewater treatment. Water Res. 2009;43:2363–2372. doi: 10.1016/j.watres.2009.02.037
  • APHA. Standard methods for the examination of water and wastewater. 21st ed. Washington DC: American Water Works Association/Water Environment Federation. 2005.
  • Chen MY, Lee DJ, Tay JH, et al. Staining of extracellular polymeric substances and cells in bioaggregates. Appl Microbiol Biotechnol. 2007;75:467–474.
  • Quince C, Lanzen A, Davenport R, et al. Removing noise from pyrosequenced amplicons. BMC Bioinformatics. 2011;12:38–56. doi: 10.1186/1471-2105-12-38
  • Cole JR, Wang Q, Cardenas E, et al. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucl Acids Res. 2008;37:141–145. doi: 10.1093/nar/gkn879
  • Johnson M, Zaretskaya I, Raytselis Y, et al. NCBI BLAST: a better web interface. Nucl Acids Res. 2008;36:W5–W9. doi: 10.1093/nar/gkn201
  • Hao T, Wei L, Lu H, et al. Characterization of sulfate-reducing granular sludge in the SANI® process. Water Res. 2013;47:7042–7052. doi: 10.1016/j.watres.2013.07.052
  • Show KY, Wang Y, Foong SF, et al. Accelerated start-up and enhanced granulation in upflow anaerobic sludge blanket reactors. Water Res. 2004;38(9):2293–2304. doi: 10.1016/j.watres.2004.01.039
  • Lemaire R, Webb RI, Yuan ZG. Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater. ISME J. 2008;2:528–541. doi: 10.1038/ismej.2008.12
  • Alphenaar PA. Anaerobic granular sludge: characterization, and factors affecting its functioning [Ph.D. thesis]. Wageningen: Wageningen Agricultural University; 1994.
  • Sutherland IW. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology. 2001;147:3–9. doi: 10.1099/00221287-147-1-3
  • Adav SS, Lee DJ, Tay JH. Extracellular polymeric substances and structural stability of aerobic granule. Water Res. 2008;42:1644–1650. doi: 10.1016/j.watres.2007.10.013
  • Seviour T, Pijuan M, Nicholson T, et al. Gel-forming exopolysaccharides explain basic differences between structures of aerobic sludge granules and floccular sludges. Water Res. 2009;43:4469–4478. doi: 10.1016/j.watres.2009.07.018
  • Dolfing J, Griffioen A, Van Neerven ARW, et al. Chemical and bacteriological composition of granular methanogenic sludge. Can J Microbiol. 1985;31:744–750. doi: 10.1139/m85-139
  • Schmidt JE, Ahring BK. Acetate and hydrogen metabolism in intact and disintegrated granules from an acetate-fed, 55°C, UASB reactor. Appl Microbiol Biotechnol. 1991;35:681–685. doi: 10.1007/BF00169637
  • Grotenhuis JTC. Structure and stability of methanogenic granular sludge [Doctoral dissertation, statement, stellingen, summary, dankwoord and vita in Dutch. Landbouwuniversiteti te Wageningen]; 1992.
  • Volodymyr I. Structure of aerobically grown microbial granules. Biogranulation Tech Wastewater Tr: Microb Granules. 2006;6:115–117. doi: 10.1016/S0713-2743(06)80108-X
  • Good IJ. The population frequencies of species and the estimation of population parameters. Biometrika. 1953;40:237–264. doi: 10.1093/biomet/40.3-4.237
  • Wiegant WM, et al. The “spaghetti theory” on anaerobic sludge formation, or the inevitability of granulation. In: Granular Anaerobic Sludge Microbiology and Technology: Proceedings of the GASMAT Workshop. Lunteren, The Netherlands. 1987. p. 146–152.
  • Teske A, Reysenbach AL. Hydrothermal microbial ecosystems. Front Microbiol. 2015. p. 6–10.
  • Hao T, Luo J, Wei L, et al. Physicochemical and biological characterization of long-term operated sulfate reducing granular sludge in the SANI® process. Water Res. 2015;71:74–84. doi: 10.1016/j.watres.2014.12.051
  • Révész S. Additives enhancing decomposition of different pollutants [Ph.D. thesis]. Hungary: Szent Istvan University; 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.