81
Views
13
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Family 4 glycoside hydrolases are special: The first β-elimination mechanism amongst glycoside hydrolases

&
Pages 167-176 | Received 26 Jul 2005, Published online: 11 Jul 2009

References

  • Allard STM, Beis K, Giraud MF, Hegeman AD, Gross JW, Wilmouth RC, Whitfield C, Graninger M, Messner P, Allen AG, Maskell DJ, Naismith JH. Toward a structural understanding of the dehydratase mechanism. Structure 2002; 10: 81–92
  • Allard STM, Giraud MF, Whitfield C, Graninger M, Messner P, Naismith JH. The crystal structure of dTDP-D-glucose 4,6-dehydratase (RmlB) from Salmonella enterica serovar typhimurium, the second enzyme in the dTDP-L-rhamnose pathway. J Mol Biol 2001; 307: 283–295
  • Alper J. Turning sweet on cancer. Science 2003; 301: 159–160
  • Amaya MF, Buschiazzo A, Nguyen T, Alzari PM. The high resolution structures of free and inhibitor-bound Trypanosoma rangeli sialidase and its comparison with T. cruzi Trans-sialidase. J Mol Biol 2003; 325: 773–784
  • Bailey JM, Fishman PH, Pentchev PG. Studies on mutarotases. II. Investigations of possible rate-limiting anomerizations in glucose metabolism. J Biol Chem 1968; 243: 4827–4831
  • Balaban RS, Ferretti JA. Rates of enzyme-catalyzed exchange determined by two-dimensional NMR: A study of glucose 6-phosphate anomerization and isomerization. Proc Natl Acad Sci USA 1983; 80: 1241–1245
  • Barber GA, Hebda PA. GDP-D-Mannose:GDP-L-galactose epimerase from Chlorella pyrenoidosa. Methods Enzymol 1982; 83: 522–525
  • Bouma CL, Reizer J, Reizer A, Robrish SA, Thompson J. 6-Phospho-α-D-glucosidase from Fusobacterium mortiferum: Cloning, expression, and assignment to family 4 of the glycosylhydrolases. J Bacteriol 1997; 179: 4129–4137
  • Burmeister WP, Cottaz S, Driguez H, Iori R, Palmieri S, Henrissat B. The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Structure 1997; 5: 663–675
  • Claridge TDW. Introducing high-resolution NMR. High-Resolution NMR Techniques in Organic Chemistry. Tetrahedron Organic Chemistry Series Vol 19, JE Baldwin, FRS Williams, RM Williams. Elsevier Science Ltd, Oxford 1999; 13–43
  • Coutinho PM, Henrissat B. The modular structure of cellulases and other carbohydrate-active enzymes: An integrated database approach. Genetics, Biochemistry and Ecology of Cellulose Degradation, K Ohmiya, K Hayashi, K Sakka, Y Kobayashi, S Karita, T Kimura. Uni Publishers Co, Tokyo 1999; 15–23
  • De Bruyne CK, Yde M. Binding of alkyl 1-thio-β-D-galactopyranosides to β-D-galactosidase from E. coli. Carbohydr Res 1977; 56: 153–164
  • Drouillard S, Armand S, Davies GJ, Vorgias CE, Henrissat B. Serratia marcescens chitobiase is a retaining glycosidase utilizing substrate acetamido group participation. Biochem J 1997; 328: 945–949
  • Dunn CR, Banfield MJ, Barker JJ, Higham CW, Moreton KM, Turgut-Balik D, Brady RL, Holbrook JJ. The structure of lactate dehydrogenase from Plasmodium falciparum reveals a new target for anti-malarial design. Nat Struct Biol 1996; 3: 912–915
  • Gacesa P. Alginate-modifying enzymes: A proposed unified mechanism of action for the lyases and epimerases. FEBS Letters 1987; 212: 199–202
  • Gebler J, Gilkes NR, Claeyssens M, Wilson DB, Béguin P, Wakarchuk WW, Kilburn DG, Miller RB, Jr, Warren RAJ, Withers SG. Stereoselective hydrolysis catalyzed by related β-1,4-glucanases and β-1,4-xylanases. J Biol Chem 1992; 267: 12559–12561
  • Henrissat B, Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochem J 1996; 316: 695–696
  • Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci USA 1995; 92: 7090–7094
  • Henrissat B, Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 1997; 7: 637–644
  • Howard S, Braun C, McCarter J, Moremen KW, Liao YF, Withers SG. Human lysosomal and jack bean α-mannosidases are retaining glycosidases. Biochem Biophys Res Commun 1997; 238: 896–898
  • Huang W, Boju L, Tkalec L, Su H, Yang HO, Gunay NS, Linhardt RJ, Kim YS, Matte A, Cygler M. Active site of chondroitin AC lyase revealed by the structure of enzyme-oligosaccharide complexes and mutagenesis. Biochemistry 2001; 40: 2359–2372
  • Koshland DE, Jr. Stereochemistry and the mechanism of enzymic reactions. Biol Rev 1953; 28: 416–436
  • Lapidus A, Galleron N, Sorokin A, Ehrlich SD. Sequencing and functional annotation of the Bacillus subtilis genes in the 200 kb rrnB-dnaB region. Microbiology-UK 1997; 143: 3431–3441
  • Lee SS, He SM, Withers SG. Identification of the catalytic nucleophile of the Family 31 α-glucosidase from Aspergillus niger via trapping of a 5- fluoroglycosyl-enzyme intermediate. Biochem J 2001; 359: 381–386
  • Lee SS, Yu S, Withers SG. α-1,4-Glucan lyase performs a trans-elimination via a nucleophilic displacement followed by a syn-elimination. J Am Chem Soc 2002; 124: 4948–4949
  • Lee SS, Yu S, Withers SG. Detailed dissection of a new mechanism for glycoside cleavage: α-1,4-Glucan lyase. Biochemistry 2003; 42: 13081–13090
  • Lodge JA, Maier T, Liebl W, Hoffmann V, Sträter N. Crystal structure of Thermotoga maritima α-glucosidase AglA defines a new clan of NAD+-dependent glycosidases. J Biol Chem 2003; 278: 19151–19158
  • Lunin VV, Li Y, Linhardt RJ, Miyazono H, Kyogashima M, Kaneko T, Bell AW, Cygler M. High-resolution crystal structure of Arthrobacter aurescens Chrondroitin AC lyase: An enzyme-substrate complex defines the catalytic mechanism. J Mol Biol 2004; 337: 367–386
  • Ly HD, Withers SG. Mutagenesis of glycosidases. Annu Rev Biochem 1999; 68: 487–522
  • Madern D. Molecular evolution within the L-malate and L-lactate dehydrogenase super-family. J Mol Evol 2002; 54: 825–840
  • Mark BL, Vocadlo DJ, Knapp S, Triggs-Raine BL, Withers SG, James MNG. Crystallographic evidence for substrate-assisted catalysis in a bacterial β-hexosaminidase. J Biol Chem 2001; 276: 10330–10337
  • McCarter JD, Withers SG. Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 1994; 4: 885–892
  • Minarik P, Tomaskova N, Kollarova M, Antalik M. Malate dehydrogenases-structure and function. Gen Physiol Biophys 2002; 21: 257–265
  • Newstead S, Watson JN, Knoll TL, Bennet AJ, Taylor G. Structure and mechanism of action of an inverting mutant sialidase Biochemistry 2005; 44: 9117–9122
  • Pikis A, Immel S, Robrish SA, Thompson J. Metabolism of sucrose and its five isomers by Fusobacterium mortiferum. Microbiology-SGM 2002; 148: 843–852
  • Piszkiewicz D, Bruice TC. Glycoside hydrolysis. II. Intramolecular carboxyl and acetamido group catalysis in β-glycoside hydrolysis. J Am Chem Soc 1968; 90: 2156–2163
  • Raasch C, Armbrecht M, Streit W, Hocker B, Strater N, Liebl W. Identification of residues important for NAD+ binding by the Thermotoga maritima α-glucosidase AglA, a member of glycoside hydrolase family 4. FEBS Letters 2002; 517: 267–271
  • Raasch C, Streit W, Schanzer J, Bibel M, Gosslar U, Liebl W. Thermotoga maritima AglA, an extremely thermostable NAD+-, Mn2 + -, and thiol-dependent α-glucosidase. Extremophiles 2000; 4: 189–200
  • Rajan SS, Yang X, Collart F, Yip VLY, Withers SG, Varrot A, Thompson J, Davies GJ, Anderson WF. Novel catalytic mechanism of glycoside hydrolysis based on the structure of an NAD+/Mn2+-dependent phospho-α-glucosidase from Bacillus subtilis. Structure 2004; 12: 1619–1629
  • Roseman S. Reflections on glycobiology. J Biol Chem 2001; 276: 41527–41542
  • Rye CS, Withers SG. Glycosidase mechanisms. Curr Opin Chem Biol 2000; 4: 573–580
  • Rye CS, Withers SG. Elucidation of the mechanism of polysaccharide cleavage by chondroitin AC lyase from Flavobacterium heparinum. J Am Chem Soc 2002; 124: 9756–9767
  • Rye CS, Withers SG. The synthesis of a novel thio-linked disaccharide of chondroitin as a potential inhibitor of polysaccharide lyases. Carbohydr Res 2004; 339: 699–703
  • Salas M, Viñeula E, Sols A. Spontaneous and enzymatically catalyzed anomerization of glucose 6-phosphate and anomeric specifcity of related enzymes. J Biol Chem 1965; 240: 561–568
  • Schachter H. The clinical relevance of glycobiology. J Clin Invest 2001; 108: 1579–1582
  • Shikita M, Fahey JW, Golden TR, Holtzclaw WD, Talalay P. An unusual case of ‘uncompetitive activation’ by ascorbic acid: Purification and kinetic properties of a myrosinase from Raphanus sativus seedlings. Biochem J 1999; 341: 725–732
  • Sinnott ML. Catalytic mechanisms of enzymic glycosyl transfer. Chem Rev 1990; 90: 1171–1202
  • Sulzenbacher G, Driguez H, Henrissat B, Schülein M, Davies GJ. Structure of the Fusarium oxysporum endoglucanase I with a nonhydrolyzable substrate analogue: Substrate distortion gives rise to the preferred axial orientation for the leaving group. Biochemistry 1996; 35: 15280–15287
  • Thompson J, Gentry-weeks CR, Nguyen NY, Folk JE, Robrish SA. Purification from Fusobacterium mortiferum ATCC-25557 of a 6-phosphoryl-O-α-D-glucopyranosyl:6-phosphoglucohydrolase that hydrolyzes maltose 6-phosphate and related phospho-α-D-glucosides. J Bacteriol 1995; 177: 2505–2512
  • Thompson J, Hess S, Pikis A. Genes malh and pagl of Clostridium acetobutylicum ATCC 824 encode NAD+- and Mn2 + -dependent phospho-α-glucosidase(s). J Biol Chem 2004; 279: 1553–1561
  • Thompson J, Pikis A, Ruvinov SB, Henrissat B, Yamamoto H, Sekiguchi J. The gene glvA of Bacillus subtilis 168 encodes a metal- requiring, NAD(H)-dependent 6-phospho-α-glucosidase: Assignment to family 4 of the glycosylhydrolase superfamily. J Biol Chem 1998; 273: 27347–27356
  • Thompson J, Robrish SA, Immel S, Lichtenthaler FW, Hall BG, Pikis A. Metabolism of sucrose and its five linkage-isomeric α-D-glucosyl-D-fructoses by Klebsiella pneumoniae: Participation and properties of sucrose-6-phosphate hydrolase and phospho-α-glucosidase. J Biol Chem 2001; 276: 37415–37425
  • Thompson J, Ruvinov SB, Freedberg DI, Hall BG. Cellobiose-6-phosphate hydrolase (CelF) of Escherichia coli: Characterization and assignment to the unusual family 4 of glycosylhydrolases. J Bacteriol 1999; 181: 7339–7345
  • Vallee BL, Stein EA, Sumerwell WN, Fischer EH. Metal content of α-amylases of various origins. J Biol Chem 1959; 234: 2901–2905
  • van den Elsen JMH, Kuntz DA, Rose DR. Structure of golgi α-mannosidase II: A target for inhibition of growth and metastasis of cancer cells. EMBO J 2001; 20: 3008–3017
  • Varrot A, Yip VLY, Li Y, Rajan SS, Yang X, Anderson WF, Thompson J, Withers SG, Davies GJ. NAD+ and metal-ion dependent hydrolysis by family 4 glycosidases: Structural insight into specificity for phospho-β-D-glucosides. J Mol Biol 2005; 346: 423–435
  • Vasella A, Davies GJ, Böhm M. Glycosidase mechanisms. Curr Opin Chem Biol 2002; 6: 619–629
  • Wang Q, Graham RW, Trimbur D, Warren RAJ, Withers SG. Changing enyzmatic reaction mechanisms by mutagenesis: Conversion of a retaining glucosidase to an inverting enzyme. J Am Chem Soc 1994; 116: 11594–11595
  • Watson JN, Dookhun V, Borgford TJ, Bennet AJ. Mutagenesis of the conserved active-site tyrosine changes a retaining sialidase into an inverting sialidase. Biochemistry 2003; 42: 12682–12690
  • Watts AG, Damager I, Amaya ML, Buschiazzo A, Alzari P, Frasch AC, Withers SG. Trypanosoma cruzi Trans-sialidase operates through a covalent sialyl-enzyme intermediate: Tyrosine is the catalytic nucleophile. J Am Chem Soc 2003; 125: 7532–7533
  • Withers SG, Dombroski D, Berven LA, Kilburn DG, Miller RC, Jr, Warren RAJ, Gilkes NR. Direct 1H N.M.R. determination of the stereochemical course of hydrolyses catalysed by glucanase components of the cellulase complex. Biochem Biophys Res Commun 1986; 139: 487–494
  • Wolfenden R, Lu X, Young G. Spontaneous hydrolysis of glycosides. J Am Chem Soc 1998; 120: 6814–6815
  • Yip VLY, Varrot A, Davies GJ, Rajan SS, Yang X, Thompson J, Anderson WF, Withers SG. An unusual mechanism of glycoside hydrolysis involving redox and elimination steps by a family 4 β-glycosidase from Thermotoga maritima. J Am Chem Soc 2004; 126: 8354–8355
  • Yip VLY, Withers SG. Nature's many mechanisms for the degradation of oligosaccharides. Org Biomol Chem 2004; 2: 2707–2713
  • Zechel DL, Withers SG. Glycosidase mechanisms: Anatomy of a finely tuned catalyst. Acc Chem Res 2000; 33: 11–18
  • Zechel DL, Withers SG. Dissection of nucleophilic and acid-base catalysis in glycosidases. Curr Opin Chem Biol 2001; 5: 643–649

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.