126
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance of an immobilized recombinant leucine aminopeptidase after storage in ethanol–water solution

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 397-406 | Received 10 Aug 2015, Accepted 09 Jun 2017, Published online: 26 Jul 2017

References

  • Asakura T, Adachi K, Schwartz E. 1978. Stabilizing effect of various organic solvents on protein. J Biol Chem 253:6423–6425.
  • Avnir D, Coradin T, Lev O, Livage J. 2006. Recent bio-applications of sol-gel materials. J Mater Chem 16:1013–1030.
  • Bagiyan GA, Koroleva IK, Soroka NV, Ufimtsev AV. 2003. Oxidation of thiol compounds by molecular oxygen in aqueous solutions. Russia Chem Bull 52:1135–1141.
  • Block SS. 2001. Disinfection, sterilization, and preservation. Philadelphia (PA): Lippincott Williams & Wilkins.
  • Brinker CJ, Scherer GW. 1990. Hydrolysis and condensation II: silicates (Chap 3). In: Scherer GW, editor. Sol-gel science. San Diego: Academic Press. p. 96–233. doi: https://doi.org/10.1016/B978-0-08-057103-4.50008-8
  • Burton SG, Cowan DA, Woodley JM. 2002. The search for the ideal biocatalyst. Nat Biotechnol 20:37–45.
  • Bzymek KP, Holz RC. 2004. The catalytic role of glutamate 151 in the leucine aminopeptidase from aeromonas proteolytica. J Biol Chem 279:31018–31025.
  • Cai X, Hong RY, Wang LS, Wang XY, Li HZ, Zheng Y, Wei DG. 2009. Synthesis of silica powders by pressured carbonation. Chem Eng J 151:380–386.
  • Cao L. 2006. Adsorption-based immobilization. In: Carrier-bound immobilized enzymes. Mörlenbach: Wiley-VCH Verlag GmbH & Co. KGaA. p. 53–168. doi: 10.1002/3527607668.ch2
  • Chen Q, Li X, Zhang Y, Qian Y. 2002. Ferroelectric properties of porous silicon. Adv Mater 14:134–137.
  • Chen X, Jiang J, Yan F, Tian S, Li K. 2014. A novel low temperature vapor phase hydrolysis method for the production of nano-structured silica materials using silicon tetrachloride. RSC Adv 4:8703–8710.
  • Chukin GD, Apretova AI. 1989. Silica gel and aerosil IR spectra and structure. J Appl Spectrosc 50:418–422.
  • Coates J. 2000. Interpretation of infrared spectra, a practical approach. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chichester (England): John Wiley. p. 10815–10837.
  • Costa HCB, Romão BB, Ribeiro E, Resende MM. 2013. Glutaraldehyde effect in the immobilization process of alpha-galactosidase from aspergillus noger in the ion exchange resin duolite A-568. Chem Eng Trans 32:1105–1110.
  • Datta S, Christena LR, Rajaram YRS. 2013. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3:1–9.
  • David AE, Wang NS, Yang VC, Yang AJ. 2006. Chemically surface modified gel (CSMG): an excellent enzyme-immobilization matrix for industrial processes. J Biotechnol 125:395–407.
  • Fernandes PA, Ramos MJ. 2004. Theoretical Insights into the mechanism for Thiol/disulfide exchange. Chemistry 10:257–266.
  • Fritz SE, Martin SM, Frisbie CD, Ward MD, Toney MF. 2004. Structural characterization of a pentacene monolayer on an amorphous sio2 substrate with grazing incidence X-ray diffraction. J Am Chem Soc 126:4084–4085.
  • Gomis-Rüth FX. 2013. Zinc adamalysins. In: Kretsinger R, Uversky V, Permyakov E, editors. Encyclopedia of metalloproteins. New York: Springer. p. 2345–2349.
  • Hartley M, Bennett B. 2009. Heterologous expression and purification of Vibrio proteolyticus (Aeromonas proteolytica) aminopeptidase: a rapid protocol. Protein Expr Purif 66:91–101.
  • Hernández-Moreno AV, Perdomo-Abúndez FC, Pérez-Medina Martínez V, Luna-Bárcenas G, Villaseñor-Ortega F, Pérez NO, López-Morales CA, Flores-Ortiz LF, Medina-Rivero E. 2015. Structural and functional characterization of a recombinant leucine aminopeptidase. J Mol Catal B Enzymatic 113:39–46.
  • Ho G-H, Liao C-C. 1983. Activation of a siliceous carrier for enzyme immobilization. United States Patent.
  • Holtz B, Wang Y, Zhu X-Y, Guo A. 2007. Denaturing and refolding of protein molecules on surfaces. Proteomics 7:1771–1774.
  • Holz RC. 2002. The aminopeptidase from Aeromonas proteolytica: structure and mechanism of co-catalytic metal centers involved in peptide hydrolysis. Coord Chem Rev 232:5–26.
  • Huntington KM, Bienvenue DL, Wei Y, Bennett B, Holz RC, Pei D. 1999. Slow-binding inhibition of the aminopeptidase from aeromonas proteolytica by peptide thiols: synthesis and spectroscopic characterization. Biochemistry 38:15587–15596.
  • Ikeda Y, Parashar A, Bressler D. 2014. Highly retained enzymatic activities of two different cellulases immobilized on non-porous and porous silica particles. Biotechnol Bioprocess Eng 19:621–628.
  • Illanes A. 2008. Study cases of enzymatic processes. In: Illanes A, editor. Enzyme biocatalysis, principles and aplications. Chile: Springer. p. 253–378.
  • Ingo GM, Riccucci C, Bultrini G, Dirè S, Chiozzini G. 2001. Thermal and microchemical characterisation of Sol-Gel SiO2, TiO2 and xSiO2–(1–x)TiO2 ceramic materials. J Thermal Anal Calorimetry 66:37–46.
  • Innocent C, Seta P. 2006. Development of chemical microreactors by enzyme immobilization onto textiles. In: Schreck S, editor. Proteins at solid-liquid interfaces. Berlin (Germany): Springer. p. 199–244.
  • Jeon H-J, Yi S-C, Oh S-G. 2003. Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method. Biomaterials 24:4921–4928.
  • Jiang R, Kunz HR, Fenton JM. 2006. Composite silica/Nafion® membranes prepared by tetraethylorthosilicate sol–gel reaction and solution casting for direct methanol fuel cells. J Membrane Sci 272:116–124.
  • Karakassides MA, Gournis D, Petridis D. 1999. An infrared reflectance study of Si-O vibrations in thermally treated alkali-saturated montmorillonites. Clay Minerals 34:429–438.
  • Luckarift HR, Spain JC, Naik RR, Stone MO. 2004. Enzyme immobilization in a biomimetic silica support. Nat Biotechnol 22:211–213.
  • Martínez A, Izquierdo-Barba I, Vallet-Regí M. 2000. Bioactivity of a CaO − SiO2 Binary Glasses System. Chem Mater 12:3080–3088.
  • Martínez JR, Palomares-Sánchez S, Ortega-Zarzosa G, Ruiz F, Chumakov Y. 2006. Rietveld refinement of amorphous SiO2 prepared via sol–gel method. Mater Lett 60:3526–3529.
  • Martínez-Zapata O, Méndez-Vivar J, Bosch P, Lara VH. 2009. Trapping organic molecules in sol–gel aluminosilicate matrices. J Non-Crystalline Solids 355:2496–2502.
  • Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463.
  • Mateo C, Fernandez-Lorente G, Rocha-Martin J, Bolivar J, Guisan J. 2013. Oriented covalent immobilization of enzymes on heterofunctional-glyoxyl supports. In: Guisan JM, editor. Immobilization of enzymes and cells. Methods in molecular biology. London (UK): Humana Press. p. 73–88.
  • Matsui M, Fowler JH, Walling LL. 2006. Leucine aminopeptidases: diversity in structure and function. Biol Chem 387:1535–1544.
  • Mattiasson B, Kaul R. 1991. Determination of coupling yields and handling of labile proteins in immobilization technology. In: Taylor RF, editor. Protein immobilization: fundamentals and applications. New York: Marcel. p. 161–179.
  • Musić S, Filipović-Vinceković N, Sekovanić L. 2011. Precipitation of amorphous SiO2 particles and their properties. Brazil J Chem Eng 28:89–94.
  • Naik RR, Whitlock PW, Rodriguez F, Borr LL, Glawe DD, Clarson SJ, Stone MO. 2003. Controlled formation of biosilica structure in vitro. Chem Commun 0(2):230–239. doi: 10.1039/B210635C
  • Onyezili FN. 1987. Glutaraldehyde activation step in enzyme immobilization on nylon. Biotechnol Bioeng 29:399–402.
  • Pecoraro É, Davolos MR, Jafellicci M. 1995. Silica morphology characterized by SEM. The effects of the solvent treatment and the drying process. J Braz Chem Soc 6:337–341.
  • Pérez Medina Martínez V, Abad-Javier ME, Romero-Díaz AJ, Villaseñor-Ortega F, Pérez NO, Flores-Ortiz LF, Medina-Rivero E. 2014. Comparability of a three-dimensional structure in biopharmaceuticals using spectroscopic methods. J Anal Methods Chem 2014:1–11.
  • Pérez-Sánchez G, Leal-Guadarrama LI, Trelles I, Pérez NO, Medina-Rivero E. 2011. High-level production of a recombinant Vibrio proteolyticus leucine aminopeptidase and its use for N-terminal methionine excision from interferon alpha-2b. Process Biochem 46:1825–1830.
  • Pliura DH, Jones JB. 1980. Effects of organic solvents on immobilized enzyme catalyses. Chymotrypsin immobilized on Sephadex. Can J Chem 58:2633–2640.
  • Rehder DS, Borges CR. 2010. Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding. Biochemistry 49:7748–7755.
  • Rodrigues RC, Ortiz C, Berenguer-Murcia A, Torres R, Fernandez-Lafuente R. 2013. Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42:6290–6307.
  • Rosa AH, Vicente AA, Rocha JC, Trevisan HC. 2000. A new application of humic substances: activation of supports for invertase immobilization. Fresenius J Anal Chem 368:730–733.
  • Russo I, Del Mese P, Viretto M, Doronzo G, Mattiello L, Trovati M, Anfossi G. 2008. Sodium azide, a bacteriostatic preservative contained in commercially available laboratory reagents, influences the responses of human platelets via the cGMP/PKG/VASP pathway. Clin Biochem 41:343–349.
  • Rutala WA, Weber DJ, Control CFD. 2008. Guideline for disinfection and sterilization in healthcare facilities, 2008. Centers for Disease Control and Prevention [Online]. [cited 2016 Feb 29]. Available at: https://www.cdc.gov/infectioncontrol/pdf/guidelines/disinfection-guidelines.pdf
  • Singh B, Gilkes RJ. 1993. The recognition of amorphous silica in indurated soil profiles. Clay Minerals 28:461–474.
  • Sinisterra J. 1997. Immobilization of enzymes on inorganic supports by covalent methods. Totowa. In: Bickerstaff G, editor. Immobilization of enzymes and cells. Methods in biotechnology. New York: Humana Press. p. 331–337.
  • Taylor A. 1993. Aminopeptidases: structure and function. Faseb J 7:290–298.
  • Thomas IM. 1988. Multicomponent glasses from the Sol-gel. In: Klein L, editor. Sol-gel technology for thin films, fibers, preforms, electronics and specialty shapes. New York: William. p. 2–16.
  • Tosa T, Sato T, Mori T, Yamamoto K, Takata I, Nishida Y, Chibata I. 1979. Immobilization of enzymes and microbial cells using carrageenan as matrix. Biotechnol Bioeng 21:1697–1709.
  • Wang Q, Gao Q, Shi J. 2004. Enhanced catalytic activity of hemoglobin in organic solvents by layered titanate immobilization. J Am Chem Soc 126:14346–14347.
  • Weetall HH. 1969. Trypsin and papain covalently coupled to porous glass: preparation and characterization. Science 166:615–617.
  • Weetall HH. 1976. Covalent coupling methods for inorganic support materials. Methods Enzymol 44:134–148.
  • Weetall HH. 1993. Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports. Appl Biochem Biotechnol 41:157–188.
  • Weetall HH, Pitcher WH. 1986. Scaling up an immobilized enzyme system. Science 232:1396–1403.
  • Weetall HH, Lee MJ. 1989. Antibodies immobilized on inorganic supports. Appl Biochem Biotechnol 22:311–330.
  • Won K, Kim S, Kim K-J, Park HW, Moon S-J. 2005. Optimization of lipase entrapment in Ca-alginate gel beads. Process Biochem 40:2149–2154.
  • Yiu HHP, Wright PA, Botting NP. 2001. Enzyme immobilisation using siliceous mesoporous molecular sieves. Microporous Mesoporous Mat 44–45:763–768.
  • Zheng L, Brennan JD. 1998. Measurement of intrinsic fluorescence to probe the conformational flexibility and thermodynamic stability of a single tryptophan protein entrapped in a sol-gel derived glass matrix. Analyst 123:1735–1744.
  • Zheng L, Reid WR, Brennan JD. 1997. Measurement of fluorescence from tryptophan to probe the environment and reaction kinetics within protein-doped Sol − Gel-derived glass monoliths. Anal Chem 69:3940–3949.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.