284
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Stabilization of multimeric nitrilase via different immobilization techniques for hydrolysis of acrylonitrile to acrylic acid

, & ORCID Icon
Pages 221-231 | Received 02 Feb 2020, Accepted 21 Dec 2020, Published online: 07 Jan 2021

References

  • Agarwal A, Nigam VK. 2014. Nitrilase mediated conversion of indole-3-acetonitrile to indole-3-acetic acid. Biocatal Agric Biotechnol. 3:351–357.
  • Alagöz D, Çelik A, Yildirim D, Tükel SS, Binay B. 2016. Covalent immobilization of Candida methylica formate dehydrogenase on short spacer arm aldehyde group containing supports. J Mol Catal B Enzym. 130:40–47.
  • Alptekin Ö, Tükel SS, Yıldırım D, Alagöz D. 2009. Characterization and properties of catalase immobilized onto controlled pore glass and its application in batch and plug-flow type reactors. J Mol Catal B Enzym. 58:124–131.
  • Banerjee A, Sharma R, Banerjee UC. 2002. The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol. 60:33–44.
  • Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R. 2014. Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv. 4:1583–1600.
  • Bayraktar H, Serilmez M, Karkaş T, Çelem EB, Önal S. 2011. Immobilization and stabilization of α-galactosidase on Sepabeads EC-EA and EC-HA. Int J Biol Macromol. 49:855–860.
  • Betancor L, López-Gallego F, Hidalgo A, Alonso-Morales N, Mateo C, Fernández-Lafuente R, Guisán JM. 2006. Different mechanisms of protein immobilization on glutaraldehyde activated supports: effect of support activation and immobilization conditions. Enzyme Microb Technol. 39:877–882.
  • Bilgin R, Yalcin MS, Yildirim D. 2016. Optimization of covalent immobilization of Trichoderma reesei cellulase onto modified ReliZyme HA403 and Sepabeads EC-EP supports for cellulose hydrolysis, in buffer and ionic liquids/buffer media. Artif Cells Nanomed Biotechnol. 44:1276–1284.
  • Binay B, Alagoz D, Yildirim D, Celik A, Tukel SS. 2016. Highly stable and reusable immobilized formate dehydrogenases: promising biocatalysts for in situ regeneration of NADH. Beilstein J Org Chem. 12:271–277.
  • Bolivar JM, Rocha-Martín J, Mateo C, Guisan JM. 2012. Stabilization of a highly active but unstable alcohol dehydrogenase from yeast using immobilization and post-immobilization techniques. Process Biochem. 47:679–686.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254.
  • Brenner C. 2002. Catalysis in the nitrilase superfamily. Curr Opin Struct Biol. 12:775–782.
  • Cai W, Su E, Zhu S, Ren Y, Wei D. 2014. Characterization of a nitrilase from Arthrobacter aurescens CYC705 for synthesis of iminodiacetic acid. J Gen Appl Microbiol. 60:207–214.
  • Dhillon J, Chhatre S, Shanker R, Shivaraman N. 1999. Transformation of aliphatic and aromatic nitriles by a nitrilase from Pseudomonas sp. Can J Microbiol. 45:811–815.
  • Dong H, Li J, Li Y, Hu L, Luo D. 2012. Improvement of catalytic activity and stability of lipase by immobilization on organobentonite. Chem Eng J. 181–182:590–596.
  • Fernandez-Lafuente R. 2009. Stabilization of multimeric enzymes: strategies to prevent subunit dissociation. Enzyme Microb Technol. 45:405–418.
  • Garcia-Galan C, Barbosa O, Fernandez-Lafuente R. 2013. Stabilization of the hexameric glutamate dehydrogenase from Escherichia coli by cations and polyethyleneimine. Enzyme Microb Technol. 52:211–217.
  • Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC. 2011. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal. 353:2885–2904.
  • Ge J, Lu D, Wang J, Liu Z. 2009. Lipase nanogel catalyzed transesterification in anhydrous dimethyl sulfoxide. Biomacromolecules. 10:1612–1618.
  • Gong JS, Lu ZM, Li H, Shi JS, Zhou ZM, Xu ZH. 2012. Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Fact. 11:142.
  • He YC, Zhou Q, Ma CL, Cai ZQ, Wang LQ, Zhao XY, Chen Q, Gao DZ, Zheng M, Wang XD, Sun Q. 2012. Biosynthesis of benzoylformic acid from benzoyl cyanide by a newly isolated Rhodococcus sp. CCZU10-1 in toluene-water biphasic system. Bioresour Technol. 115:88–95.
  • Homaei AA, Sariri R, Vianello F, Stevanato R. 2013. Enzyme immobilization: an update. J Chem Biol. 6:185–205.
  • Jamwal S, Dautoo UK, Ranote S, Dharela R, Chauhan GS. 2019. Enhanced catalytic activity of new acryloyl crosslinked cellulose dialdehyde-nitrilase Schiff base and its reduced form for nitrile hydrolysis. Int J Biol Macromol. 131:117–126.
  • Jin LQ, Guo DJ, Li ZT, Liu ZQ, Zheng YG. 2016. Immobilization of nitrilase on bioinspired silica for efficient synthesis of 2-hydroxy-4-(methylthio) butanoic acid from 2-hydroxy-4-(methylthio) butanenitrile. J Ind Microbiol Biotechnol. 43:585–593.
  • Kamal A, Kumar MS, Kumar CG, Shaik T. 2011. Bioconversion of acrylonitrile to acrylic acid by Rhodococcus ruber strain AKSH-84. J Microbiol Biotechnol. 21:37–42.
  • Kaul P, Stolz A, Banerjee UC. 2007. Cross-linked amorphous nitrilase aggregates for enantioselective nitrile hydrolysis. Adv Synth Catal. 349:2167–2176.
  • Kiziak C, Stolz A. 2009. Identification of amino acid residues responsible for the enantioselectivity and amide formation capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191. Appl Environ Microbiol. 75:5592–5599.
  • Kumar V, Bhalla TC. 2013. Transformation of p-hydroxybenzonitrile to p-hydroxybenzoic acid using nitrilase activity of Gordonia terrae. Biocatal Biotransform. 31:42–48.
  • Li H, Yang T, Gong JS, Xiong L, Lu ZM, Li H, Shi JS, Xu ZH. 2015. Improving the catalytic potential and substrate tolerance of Gibberella intermedia nitrilase by whole-cell immobilization. Bioprocess Biosyst Eng. 38:189–197.
  • Liu M, Sibi MP. 2002. Recent advances in the stereoselective synthesis of β-amino acids. Tetrahedron. 58:7991–8035.
  • Martinkova L, Kren V. 2002. Nitrile- and amide-converting microbial enzymes: stereo-, regio- and chemoselectivity. Biocatal Biotransform. 20:73–93.
  • Martinkova L, Kren V. 2010. Biotransformations with nitrilases. Curr Opin Chem Biol. 14:130–137.
  • Martinkova L, Mylerova V. 2003. Synthetic applications of nitrile-converting enzymes. COC. 7:1279–1295.
  • Mateo C, Abian O, Bernedo M, Cuenca E, Fuentes M, Fernandez-Lorente G, Palomo JM, Grazu V, Pessela BCC, Giacomini C, et al. 2005. Some special features of glyoxyl supports to immobilize proteins. Enzyme Microb Technol. 37:456–462.
  • Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol. 40:1451–1463.
  • Nigam VK, Khandelwal AK, Gothwal RK, Mohan MK, Choudhury B, Vidyarthi AS, Ghosh P. 2009. Nitrilase-catalysed conversion of acrylonitrile by free and immobilized cells of Streptomyces sp. J Biosci. 34:21–26.
  • O'Reilly C, Turner PD. 2003. The nitrilase family of CN hydrolysing enzymes – a comparative study. J Appl Microbiol. 95:1161–1174.
  • Ozdemir Babavatan E, Yildirim D, Peksel A, Binay B. 2020. Immobilization of Rhizomucor miehei lipase onto montmorillonite K-10 and polyvinyl alcohol gel. Biocatal Biotransform. 38:274–282.
  • Ramezani-Pour N, Badoei-Dalfard A, Namaki-Shoushtari A, Karami Z. 2015. Nitrile-metabolizing potential of Bacillus cereus strain FA12; nitrilase production, purification, and characterization. Biocatal Biotransform. 33:156–166.
  • Ramteke PW, Maurice NG, Joseph B, Wadher BJ. 2013. Nitrile-converting enzymes: an eco-friendly tool for industrial biocatalysis. Biotechnol Appl Biochem. 60:459–481.
  • Rebroš M, Rosenberg M, Mlichová Z, Krištofíková Ľ. 2007. Hydrolysis of sucrose by invertase entrapped in polyvinyl alcohol hydrogel capsules. Food Chem. 102:784–787.
  • Rios NS, Mendez-Sanchez C, Arana-Peña S, Rueda N, Ortiz C, Gonçalves LRB, Fernandez-Lafuente R. 2019. Immobilization of lipase from Pseudomonas fluorescens on glyoxyl-octyl-agarose beads: improved stability and reusability. Biochim Biophys Acta Proteins Proteom. 1867:741–747.
  • Rodrigues RC, Ortiz C, Berenguer-Murcia Á, Torres R, Fernández-Lafuente R. 2013. Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev. 42:6290–6307.
  • Sadana A, Henley AP. 1987. Single-step unimolecular non-first-order enzyme deactivation kinetics. Biotechnol Bioeng. 30:717–723.
  • Shen M, Zheng YG, Shen YC. 2009. Isolation and characterization of a novel Arthrobacter nitroguajacolicus ZJUTB06-99, capable of converting acrylonitrile to acrylic acid. Process Biochem. 44:781–785.
  • Thakur N, Sharma NK, Thakur S, Monika  , Bhalla TC. 2019. Bioprocess development for the synthesis of 4-aminophenylacetic acid using nitrilase activity of whole cells of Alcaligenes faecalis MTCC 12629. Catal Lett. 10:2854–2863.
  • Thuku RN, Brady D, Benedik MJ, Sewell BT. 2009. Microbial nitrilases: versatile, spiral forming, industrial enzymes. J Appl Microbiol. 106:703–727.
  • Trobo-Maseda L, Orrego AH, Moreno-Perez S, Fernandez-Lorente G, Guisan JM, Rocha-Martin J. 2018. Stabilization of multimeric sucrose synthase from Acidithiobacillus caldus via immobilization and post-immobilization techniques for synthesis of UDP-glucose. Appl Microbiol Biotechnol. 102:773–787.
  • Vejvoda V, Kaplan O, Bezouška K, Martínková L. 2006. Mild hydrolysis of nitriles by the immobilized nitrilase from Aspergillus niger K10. J Mol Catal B Enzym. 39:55–58.
  • Vejvoda V, Kaplan O, Bezouška K, Pompach P, Šulc M, Cantarella M, Benada O, Uhnáková B, Rinágelová A, Lutz-Wahl S, et al. 2008. Purification and characterization of a nitrilase from Fusarium solani O1. J Mol Catal B Enzym. 50:99–106.
  • Vieira MF, Vieira AMS, Zanin GM, Tardioli PW, Mateo C, Guisán JM. 2011. β-Glucosidase immobilized and stabilized on agarose matrix functionalized with distinct reactive groups. J Mol Catal B Enzym. 69:47–53.
  • Xu X, Lin J, Cen P. 2006. Advances in the research and development of acrylic acid production from biomass. Chin J Chem Eng. 14:419–427.
  • Xu Z, Huang JW, Xia CJ, Zou SP, Xue YP, Zheng YG. 2019. Enhanced catalytic stability and reusability of nitrilase encapsulated in ethyleneamine-mediated biosilica for regioselective hydrolysis of 1-cyanocycloalkaneacetonitrile. Int J Biol Macromol. 130:117–124.
  • Xue YP, Liu ZQ, Xu M, Wang YJ, Zheng YG, Shen YC. 2010. Enhanced biotransformation of (R,S)-mandelonitrile to (R)-(−)-mandelic acid with in situ production removal by addition of resin. Biochem Eng J. 53:143–149.
  • Yildirim D, Alagöz D, Toprak A, Tükel S, Fernandez-Lafuente R. 2019. Tuning dimeric formate dehydrogenases reduction/oxidation activities by immobilization. Process Biochem. 85:97–105.
  • Zhang XH, Liu ZQ, Xue YP, Zheng YG. 2014. Activity improvement of a regioselective nitrilase from Acidovorax facilis and its application in the production of 1-(cyanocyclohexyl) acetic acid. Process Biochem. 49:2141–2148.
  • Zhang ZJ, Pan J, Li CX, Yu HL, Zheng GW, Ju X, Xu JH. 2014. Efficient production of (R)-(-)-mandelic acid using glutaraldehyde cross-linked Escherichia coli cells expressing Alcaligenes sp. nitrilase. Bioprocess Biosyst Eng. 37:1241–1248.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.