94
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Efficient enantiomer selective acetylation of 1-methyl-3-phenylpropylamine by Fe3O4-APTES-CS2-lipase magnetic nanoparticles in an alternating magnetic field

, , , , &
Pages 107-120 | Received 29 May 2020, Accepted 20 Jan 2021, Published online: 07 Mar 2021

References

  • Al-Qodah Z, Al-Shannag M, Al-Busoul M, Penchev I, Orfali W. 2017. Immobilized enzymes bioreactors utilizing a magnetic field: a review. Biochem Eng J. 121:94–106.
  • Ashjari M, Mohammadi M, Badri R. 2015a. Chemical amination of Rhizopus oryzae lipase for multipoint covalent immobilization on epoxy-functionalized supports: modulation of stability and selectivity. J Mol Catal B Enz. 115:128–134.
  • Ashjari M, Mohammadi M, Badri R. 2015b. Selective concentration of eicosapentaenoic acid and docosahexaenoic acid from fish oil with immobilized/stabilized preparations of Rhizopus oryzae lipase.J Mol Catal B Enz. 122:147–155.
  • Baghban A, Heidarizadeh M, Doustkhah E, Rostamnia S, Rezaei PF. 2017. Covalently bonded pancreatic lipase onto the dithiocarbamate/chitosan-based magnetite: stepwise fabrication of Fe3O4@CS/NHCS-lip as a novel and promising nanobiocatalyst. Int J Biol Macromol. 103:1194–1200.
  • Boros Z, Falus P, Márkus M, Weiser D, Oláh M, Hornyánszky G, Nagy J, Poppe L. 2013. How the mode of Candida antarctica lipase B immobilization affects the continuous-flow kinetic resolution of racemic amines at various temperatures. J Mol Catal B: Enzym. 85–86:119–125.
  • Csuka P, Boros Z, Őrfi L, Dobos J, Poppe L, Hornyánszky G. 2015. Chemoenzymatic route to Tyrphostins involving lipase-catalyzed kinetic resolution of 1-phenylethanamine with alkyl cyanoacetates as novel acylating agents. Tetrahedron Asymmetry. 26(12–13):644–649.
  • de Miranda AS, Miranda LSM, de Souza ROMA. 2015. Lipases: valuable catalysts for dynamic kinetic resolutions. Biotechnol Adv. 33(5):372–393.
  • Fathi Z, Doustkhah E, Rostamnia S, Darvishi F, Ghodsi A, Ide Y. 2018. Interaction of Yarrowia lipolytica lipase with dithiocarbamate modified magnetic carbon Fe3O4@C-NHCS2H core-shell nanoparticles. Int J Biol Macromol. 117:218–224.
  • Gao J, Kong W, Zhou L, He Y, Ma L, Wang Y, Yin L, Jiang Y. 2017. Monodisperse core-shell magnetic organosilica nanoflowers with radial wrinkle for lipase immobilization. Chem Eng J. 309:70–79.
  • Gennari A, Führ AJ, Volpato G, Volken de Souza CF. 2020. Magnetic cellulose: versatile support for enzyme immobilization - a review. Carbohydr Polym. 246:116646.
  • Geor Malar C, Seenuvasan M, Kumar KS, Kumar A, Parthiban R. 2020. Review on surface modification of nanocarriers to overcome diffusion limitations: an enzyme immobilization aspect. Biochem Eng J. 158:107574.
  • Habibi N. 2015. Functional biocompatible magnetite–cellulose nanocomposite fibrous networks: characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis. Spectrochim Acta Part A Mol Biomol Spectrosc. 136:1450–1453.
  • Hajar M, Vahabzadeh F. 2016. Biolubricant production from castor oil in a magnetically stabilized fluidized bed reactor using lipase immobilized on Fe3O4 nanoparticles. Ind Crops Prod. 94:544–556.
  • Heidarizadeh M, Doustkhah E, Rostamnia S, Rezaei PF, Harzevili FD, Zeynizadeh B. 2017. Dithiocarbamate to modify magnetic graphene oxide nanocomposite (Fe3O4-GO): a new strategy for covalent enzyme (lipase) immobilization to fabrication a new nanobiocatalyst for enzymatic hydrolysis of PNPD. Int J Biol Macromol. 101:696–702.
  • Homaei AA, Sariri R, Vianello F, Stevanato R. 2013. Enzyme immobilization: an update. J Chem Biol. 6(4):185–205.
  • Hu J, Hu X, Chen A, Zhao S. 2014. Directly aqueous synthesis of well-dispersed superparamagnetic Fe3O4 nanoparticles using ionic liquid-assisted co-precipitation method. J Alloys Compd. 603(30):1–6.
  • Kovacic F, Babic N, Krauss U, Jaeger KE. 2018. Classification of Lipolytic Enzymes from Bacteria. In: Rojo F, editor. Aerobic utilization of hydrocarbons, oils and lipids. Handbook of hydrocarbon and lipid microbiology. Cham (Switzerland): Springer International; p. 1–35.
  • Lasmi K, Derder H, Kermad A, Sam S, Boukhalfa-Abib H, Belhousse S, Tighilt FZ, Hamdani K, Gabouze N. 2018. Tyrosinase immobilization on functionalized porous silicon surface for optical monitoring of pyrocatechol. Appl Surf Ence. 446(15):3–9.
  • Li R, Fu G, Liu C, McClements DJ, Wan Y, Wang S, Liu T. 2018. Tannase immobilisation by amino-functionalised magnetic Fe3O4-chitosan nanoparticles and its application in tea infusion. Int J Biol Macromol. 114:1134–1143.
  • Liu Y, Guo C, Liu CZ. 2015. Enhancing the resolution of (R,S)-2-octanol catalyzed by magnetic cross-linked lipase aggregates using an alternating magnetic field. Chem Eng J. 280:36–40.
  • Mehdi M, Zohreh H, Somayyeh G, Yousefi M. 2018. A novel approach for bioconjugation of, Rhizomucor miehei, lipase (RML) onto amine-functionalized supports; application for enantioselective resolution of, rac-ibuprofen. Int J Biol Macromol. 117:523–531.
  • Mehrasbi MR, Mohammadi J, Peyda M, Mohammadi M. 2017. Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil. Renewable Energy. 101:593–602.
  • Miao C, Yang L, Wang Z, Luo W, Li H, Lv P, Yuan Z. 2018. Lipase immobilization on amino-silane modified superparamagnetic Fe3O4 nanoparticles as biocatalyst for biodiesel production. Fuel. 224:774–782.
  • Nechab M, Azzi N, Vanthuyne N, Bertrand M, Gastaldi S, Gil G. 2007. Highly selective enzymatic kinetic resolution of primary amines at 80 degrees C: a comparative study of carboxylic acids and their ethyl esters as acyl donors. J Org Chem. 72(18):6918–6923.
  • Nicolás P, Lassalle VL, Ferreira ML. 2017. Quantification of immobilized Candida antarctica lipase B (CALB) using ICP-AES combined with Bradford method. Enzyme Microb Technol. 97:97–103.
  • Oláh M, Boros Z, Hornyánszky G, Poppe L. 2016. Isopropyl 2-ethoxyacetate – an efficient acylating agent for lipase-catalyzed kinetic resolution of amines in batch and continuous-flow modes. Tetrahedron. 72(46):7249–7255.
  • Ou Z, Pan J, Tang L, Shi H. 2019. Continuous enantiomer-selective acylation reaction of 1-phenylethanamine in a magnetic fluidized bed reactor system (MFBRS). J Chem Technol Biotechnol. 94(6):1951–1957.
  • Ozyilmaz E, Bayrakci M, Yilmaz M. 2016. Improvement of catalytic activity of Candida rugosa lipase in the presence of calix[4]arene bearing iminodicarboxylic/phosphonic acid complexes modified iron oxide nanoparticles. Bioorg Chem. 65:1–8.
  • Ozyilmaz E, Cetinguney S, Yilmaz M. 2019. Encapsulation of lipase using magnetic fluorescent calix[4]arene derivatives; improvement of enzyme activity and stability. Int J Biol Macromol. 133:1042–1050.
  • Ozyilmaz E, Etci K, Sezgin M. 2018. Candida rugosa lipase encapsulated with magnetic sporopollenin: design and enantioselective hydrolysis of racemic arylpropanoic acid esters. Prep Biochem Biotechnol. 48(10):887–897.
  • Pan J, Ou Z, Tang L, Shi H. 2019. Enhancement of catalytic activity of lipase-immobilized Fe3O4-chitosan microsphere for enantioselective acetylation of racemic 1-phenylethylamine. Korean J Chem Eng. 36(5):729–739.
  • Sanfilippo C, Paternò AA, Patti A. 2018. Resolution of racemic amines via lipase-catalyzed benzoylation: chemoenzymatic synthesis of the pharmacologically active isomers of labetalol. Mol Catal. 449:79–84.
  • Sarmah N, Revathi D, Sheelu G, Rani KY, Sridhar S, Mehtab V, Sumana C. 2017. Recent advances on sources and industrial applications of lipases. Biotechnol Progr. 348:54–70.
  • Seda K, Cihangir T. 2018. Squaramide catalyzed α-chiral amine synthesis. Tetrahedron Lett. 59:3725–3737.
  • Shamoon A, Qayyum H, Mohd S, Mobin M. 2020. Tailoring a robust nanozyme formulation based on surfactant stabilized lipase immobilized onto newly fabricated magnetic silica anchored graphene nanocomposite: aggrandized stability and application. Mater Sci Eng. 112:110883.
  • Silva Dias G, Bandeira PT, Jaerger S, Piovan L, Mitchell DA, Wypych F, Krieger N. 2019. Immobilization of Pseudomonas cepacia lipase on layered double hydroxide of Zn/Al-Cl for kinetic resolution of rac-1-phenylethanol. Enzyme Microb Technol. 130:109365.
  • Singh AK, Mukhopadhyay M. 2014. Immobilization of Candida antarctica lipase onto cellulose acetate-coated Fe2O3 nanoparticles for glycerolysis of olive oil. Korean J Chem Eng. 31(7):1225–1232.
  • Su H, Han X, He L, Deng L, Yu K, Jiang H, Wu C, Jia Q, Shan S. 2019. Synthesis and characterization of magnetic dextran nanogel doped with iron oxide nanoparticles as magnetic resonance imaging probe. Int J Biol Macromol. 128:768–774.
  • Tang W, Chen C, Sun W, Wang P, Wei D. 2019. Low-cost mussel inspired poly(Catechol/Polyamine) modified magnetic nanoparticles as a versatile platform for enhanced activity of immobilized enzyme. Int J Biol Macromol. 128:814–824.
  • Vakarov SA, Gruzdev DA, Chulakov EN, Sadretdinova LS, Tumashov AA, Pervova MG, Ezhikova MA, Kodess MI, Levit GL, Krasnov VP, et al. 2016. Acylative kinetic resolution of racemic heterocyclic amines with (R)-2-phenoxypropionyl chloride. Tetrahedron: Asymmetry. 27(24):1231–1237.
  • Vashist SK, Lam E, Hrapovic S, Male KB, Luong JHT. 2014. Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics. Chem Rev. 114(21):11083–11130.
  • Xie W, Wang J. 2014. Enzymatic production of biodiesel from soybean oil by using immobilized lipase on Fe3O4/poly(styrene-methacrylic acid) magnetic microsphere as a biocatalyst. Energy Fuels. 28(4):2624–2631.
  • Xu S, Wang M, Feng B, Han X, Lan Z, Gu H, Li H, Li H. 2018. Dynamic kinetic resolution of amines by using palladium nanoparticles confined inside the cages of amine-modified MIL-101 and lipase. J Catal. 363:9–17.
  • Yildiz H, Ozyilmaz E, Bhatti AA, Yilmaz M. 2017. Enantioselective resolution of racemic flurbiprofen methyl ester by lipase encapsulated mercapto calix[4]arenes capped Fe3O4 nanoparticles. Bioprocess Biosyst Eng. 40(8):1189.
  • Yu D, Chen K, Liu J, Pan Z, Jiang L, Wang L, Elfalleh W. 2020. Application of magnetic immobilized papain on passivated rice bran lipase. Int J Biol Macromol. 157:51–59.
  • Yuan X, Zhang PL, Xu WF, Tang KW. 2019. Kinetic model of resolution of 4-methoxymandelic acid enantiomers by lipase-catalyzed transesterification reaction. Appl Catal A-Gen. 587:117274.
  • Zaki SS, Malik SM, Saleh AA, Babalghith AO, Kamal A. 2017. Lipases in asymmetric transformations: recent advances in classical kinetic resolution and lipase–metal combinations for dynamic processes. Coord Chem Rev. 348:54–70.
  • Zhang Y, Zhang Y, Ren Y, Ramström O. 2015. Synthesis of chiral oxazolidinone derivatives through lipase-catalyzed kinetic resolution. J Mol Catal B: Enzym. 122:29–34.
  • Zheng M, Su Z, Ji X, Ma G, Wang P, Zhang S. 2013. Magnetic field intensified bi-enzyme system with in situ cofactor regeneration supported by magnetic nanoparticles. J Biotechnol. 168(2):212–217.
  • Zheng M, Zhang S, Ma G, Wang P. 2011. Effect of molecular mobility on coupled enzymatic reactions involving cofactor regeneration using nanoparticle-attached enzymes. J Biotechnol. 154(4):274–280.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.