415
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Metal-organic framework based on iron and terephthalic acid as a multiporous support for lipase Burkholderia lata LBBIO-BL02 and its potential for biocatalysis

, , , , & ORCID Icon
Pages 332-343 | Received 21 Oct 2021, Accepted 18 Apr 2022, Published online: 02 May 2022

References

  • Almeida FLC, Castro MPJ, Travália BM, Forte MBS. 2021. Trends in lipase immobilization: bibliometric review and patent analysis. Process Biochem. 110:37–51.
  • Alnoch RC, Alves dos Santos L, Marques de Almeida J, Krieger N, Mateo C. 2020. Recent trends in biomaterials for immobilization of lipases for application in non-conventional media. Catalysts. 10(6):697–725.
  • An H, Li M, Gao J, Zhang Z, Ma S, Chen Y. 2019. Incorporation of biomolecules in metal-organic frameworks for advanced applications. Coord Chem Ver. 384:90–106.
  • Anbia M, Hoseini V, Sheykhi S. 2012. Sorption of methane, hydrogen and carbon dioxide on metal-organic framework, iron terephthalate (MOF-235). J Ind Eng Chem. 18(3):1149–1152.
  • Asakuma Y, Yamamura Y, Nakagawa K, Maeda K, Fukui K. 2011. Mechanism of depolymerization reaction of polyethylene terephthalate: experimental and theoretical studies. J Polym Environ. 19(1):209–216.
  • Asheghhosseini A, Zolgharnein J. 2020. Iron terephthalate metal–organic framework (MOF-235) as an efficient adsorbent for removal of toluidine blue dye from aqueous solution using Box–Behnken design as multivariate optimization approach. 17(10):2663–2673.
  • Bchellaoui N, Hayat Z, Mami M, Dorbez-Sridi R, El Abed AI. 2017. Microfluidic-assisted formation of highly monodisperse and mesoporous silica soft microcapsules. Sci Rep. 7(1):16325–16335.
  • Bento HBS, de Castro HF, Oliveira PC, Freitas L. 2017. Magnetized poly (STY-coDVB) as a matrix for immobilizing microbial lipase to be used in biotransformation. J Magn Magn Mater. 426:95–101.
  • Bradford M. 1976. A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254.
  • Brunauer S, Emmett PH, Teller E. 1938. Adsorption of gases in multimolecular layers. J Am Chem Soc. 60(2):309–319.
  • Castro MdC, Garcia PS, Andrade MM, Grossmann MVE, Simões BM, Samulewski RB, Baron AM. 2021. Lipase immobilization on biodegradable film with sericin. Biotechnol Appl Biochem. 2021:1–8.
  • Cen Y-K, Liu Y-X, Xue Y-P, Zheng Y-G. 2019. Immobilization of enzymes in/on membranes and their applications. Adv Synth Catal. 361(24):5500–5515.
  • Chapman J, Ismail A, Dinu C. 2018. Industrial applications of enzymes: recent advances, techniques, and outlooks. Catalysts. 8(6):238–264.
  • Chen D, Chen S, Jiang Y, Xie S, Quan H, Hua L, Luo X, Guo L. 2017. Heterogeneous fenton-like catalysis of Fe-MOF derived magnetic carbon nanocomposites for degradation of 4-nitrophenol. RSC Adv. 7(77):49024–49030.
  • Costa-Silva TA, Carvalho AKF, Souza CRF, De Castro HF, Bachmann L, Said S, Oliveira WP. 2021. Enhancement lipase activity via immobilization onto chitosan beads used as seed particles during fluidized bed drying: application in butyl butyrate production. Appl Catal A-Gen. 622:118217.
  • Cui J, Ren S, Sun B, Jia S. 2018. Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes: current development and future challenges. Coord Chem Rev. 370:22–41.
  • Cychosz KA, Thommes M. 2018. Progress in the physisorption characterization of nanoporous gas storage materials. Engineering. 4(4):559–566.
  • Da Ros PCM, Silva GAM, Mendes AA, Santos JC, de Castro HF. 2010. Evaluation of the catalytic properties of Burkholderia cepacia lipase immobilized on non-commercial matrices to be used in biodiesel synthesis from different feedstocks. Bioresour Technol. 101(14):5508–5516.
  • De Abreu L, Fernandez-Lafuente R, Rodrigues RC, Volpato G, Ayub MAZ. 2014. Efficient purification-immobilization of an organic solvent-tolerant lipase from Staphylococcus warneri EX17 on porous styrene-divinylbenzene beads. J Mol Catal B Enzym. 99:51–55..
  • Deng Q, Luo Z, Liu H, Zhou Y, Zhou C, Yang R, Wang L, Yan Y, Xu Y. 2020. Facile synthesis of Fe-based metal-organic framework and graphene composite as an anode material for K-ion batteries. Ionics. 26(11):5565–5573.
  • Ding M, Cai X, Jiang H-L. 2019. Improving MOF stability: approaches and applications. Chem Sci. 10(44):10209–10230.
  • Ding Y, Liu L, Fang Y, Zhang X, Lyu M, Wang S. 2018. The adsorption of dextranase onto Mg/Fe-layered double hydroxide: insight into the immobilization. Nanomaterials. 8(3):173–186.
  • Doan HV, Hamzah HA, Prabhakaran PK, Petrillo C, Ting VP. 2019. Hierarchical metal–organic frameworks with macroporosity: synthesis, achievements, and challenges. Nano-Micro Lett. 11:54–68.
  • Drout RJ, Robison L, Farha OK. 2019. Catalytic applications of enzymes encapsulated in metal–organic frameworks. Coord Chem Rev. 381:151–160.
  • Gao L-L, Gao E-Q. 2021. Metal–organic frameworks for electrochemical sensors of neurotransmitters. Coord Chem Rev. 434:213784–213806.
  • Gascón V, Jiménez MB, Blanco RM, Sanchez-Sanchez M. 2018. Semi-crystalline Fe-BTC MOF material as an efficient support for enzyme immobilization. Catal. 304:119–126.
  • Gkaniatsou E, Sicard C, Ricoux R, Mahy J-P, Steunou N, Serre C. 2017. Metal–organic frameworks: a novel host platform for enzymatic catalysis and detection. Mater Horiz. 4(1):55–63.
  • Gustafsson H, Johansson EM, Barrabino A, Odén M, Holmberg K. 2012. Immobilization of lipase from Mucor miehei and Rhizopus oryzae into mesoporous silica–The effect of varied particle size and morphology. Colloids Surf B: Biointerfaces. 100:22–30.
  • Haque E, Jun JW, Jhung SH. 2011. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J Hazard Mater. 185(1):507–511.
  • Huang N, Drake H, Li J, Pang J, Wang Y, Yuan S, Wang Q, Cai P, Qin J, Zhou H-C. 2018. Flexible and hierarchical metal-organic framework composites for high-performance catalysis. Angew Chem Int Ed Engl. 57(29):8916–8920.
  • Ismail AR, Baek K-H. 2020. Lipase immobilization with support materials, preparation techniques, and applications: present and future aspects. Int J Biol Macromol. 163:1624–1639.
  • Jeyaseelan A, Naushad M, Ahamad T, Viswanathan N. 2021. Design and development of amine functionalized iron based metal organic frameworks for selective fluoride removal. J Environ Chem Eng. 9(1):104563.
  • Ji Y, Wu Z, Zhang P, Qiao M, Hu Y, Shen B, Li B, Zhang X. 2021. Enzyme-functionalized magnetic framework composite fabricated by one-pot encapsulation of lipase and Fe3O4 nanoparticle into metal–organic framework. Biochem Eng J. 169:107962.
  • Joshi R, Sharma R, Kuila A. 2019. Lipase production from Fusarium incarnatum KU377454 and its immobilization using Fe3O4 NPs for application in waste cooking oil degradation. Bioresour Technol Rep. 5:134–140.
  • Kang MJ, Yu HJ, Jegal J, Kim HS, Cha HG. 2020. Depolymerization of PET into terephthalic acid in neutral media catalyzed by the ZSM-5 acidic catalyst. Chem Eng J. 398:125655–125664.
  • Khan N, Maseet M, Basir SF. 2020. Synthesis and characterization of biodiesel from waste cooking oil by lipase immobilized on genipin cross-linked chitosan beads: a green approach. Int J Green Energy. 17(1):84–93.
  • Kim H, Choi N, Kim Y, Kim H-R, Lee J, Kim I-H. 2019. Immobilized lipase-catalyzed esterification for synthesis of trimethylolpropane triester as a biolubricant. Renew Energy. 130:489–494.
  • Krieger N, Bhatnagar T, Baratti JC, Baron AM, Lima VMG, Mitchell DA. 2004. Non-aqueous biocatalysis in heterogeneous solvent systems. Food Technol Biotechnol. 42:279–286.
  • Labus K, Wolanin K, Radosiński Ł. 2020. Comparative study on enzyme immobilization using natural hydrogel matrices – experimental studies supported by molecular models analysis. Catalysts. 10(5):489–512.
  • Li Q, Chen Y, Bai S, Shao X, Jiang L, Li Q. 2020. Immobilized lipase in bio-based metal-organic frameworks constructed by biomimetic mineralization: a sustainable biocatalyst for biodiesel synthesis. Colloids Surf B Biointerfaces. 188:110812.
  • Li Y, Hou G, Yang J, Xie J, Yuan X, Yang H, Wang M. 2016. Facile synthesis of MOF 235 and its superior photocatalytic capability under visible light irradiation. RSC Adv. 6(20):16395–16403.
  • Liu J, Ma R-T, Shi Y-P. 2020. Recent advances on support materials for lipase immobilization and applicability as biocatalysts in inhibitors screening methods – a review. Anal Chim Acta. 1101:9–22.
  • Luo Y, Ahmad M, Schug A, Tsotsalas M. 2019. Rising up: hierarchical metal-organic frameworks in experiments and simulations. Adv Mater. 31(26):1901744–1901765.
  • Lykourinou V, Chen Y, Wang X-S, Meng L, Hoang T, Ming L-J, Musselman RL, Ma S. 2011. Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF: a new platform for enzymatic catalysis. J Am Chem Soc. 133(27):10382–10385.
  • Mahmoud E, Ali L, El Sayah A, Alkhatib SA, Abdulsalam H, Juma M, Al-Muhtaseb AH. 2019. Implementing metal-organic frameworks for natural gas storage. Crystals. 9(8):406–425.
  • Majewski MB, Howarth AJ, Li P, Wasielewski MR, Hupp JT, Farha OK. 2017. Enzyme encapsulation in metal–organic frameworks for applications in catalysis. CrystEngComm. 19(29):4082–4091.
  • Masoomi MY, Morsali A, Dhakshinamoorthy A, García H. 2019. Mixed-metal MOFs: unique opportunities in metal-organic framework (MOF) Functionality and Design. Angew Chem Int Ed Engl. 58(43):15188–15205.
  • Mehta J, Bhardwaj N, Bhardwaj SK, Kim K-H, Deep A. 2016. Recent advances in enzyme immobilization techniques: metal-organic frameworks as novel substrates. Coord Chem Ver. 322:30–40.
  • Mijone PD, Bôas RNV, Bento HBS, Reis CER, de Castro HF. 2020. Coating and incorporation of i/ron oxides into a magnetic-polymer composite to be used as lipase support for ester syntheses. Renew Energy. 149:1167–1173.
  • Muley AB, Mulchandani KH, Singhal RS. 2020. Immobilization of enzymes on iron oxide magnetic nanoparticles: synthesis, characterization, kinetics and thermodynamics. Methods Enzymol. 630:39–79.
  • Nadar SS, Rathod VK. 2018. Encapsulation of lipase within metal-organic framework (MOF) with enhanced activity intensified under ultrasound. Enzyme Microb Technol. 108:11–20.
  • Neupane S, Patnode K, Li H, Baryeh K, Liu G, Hu J, Chen B, Pan Y, Yang Z. 2019. Enhancing enzyme immobilization on carbon nanotubes via Metal-Organic Frameworks for Large-Substrate Biocatalysis. ACS Appl Mater Interfaces. 11(12):12133–12141.
  • Oliveira BH, Santos RÉ, Loiola LEA, Nascimento VMG. 2015. Over production and properties of lipase by a wild strain of Burkholderia lata LBBIO-BL02 using chicken fat. Ann Microbiol. 65(2):865–877.
  • Pascanu V, González Miera G, Inge AK, Martín-Matute B. 2019. Metal-organic frameworks as catalysts for organic synthesis: a critical perspective. J Am Chem Soc. 141(18):7223–7234.
  • Peng Y, Krungleviciute V, Eryazici I, Hupp JT, Farha OK, Yildirim T. 2013. Methane storage in metal-organic frameworks: current records, surprise findings, and challenges. J Am Chem Soc. 135(32):11887–11894.
  • Pulido IY, Prieto E, Jimenez-Junca C. 2021. Ethanol as additive enhance the performance of immobilized lipase LipA from Pseudomonas aeruginosa on polypropylene support. Biotechnol Rep. 31:e00659.
  • Rafiee F, Rezaee M. 2021. Different strategies for the lipase immobilization on the chitosan based supports and their applications. Int J Biol Macromol. 179:170–195.
  • Salama RE, Hakam SA, Samra SE, EL-Dafrawy SM, Ahmed AI. 2018. Adsorption, equilibrium and kinetic studies on the removal of methyl orange dye from aqueous solution by using of copper metal organic framework (Cu-BDC). Int J Modern Chem. 10:195–2017.
  • Shen L, Cheng KCK, Schroeder M, Yang P, Marsh ENG, Lahann J, Chen Z. 2016. Immobilization of enzyme on a polymer surface. Surf Sci. 648:53–59.
  • Shen Q, Yang R, Hua X, Ye F, Zhang W, Zhao W. 2011. Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochem. 46(8):1565–1571.
  • Sochalski-Kolbus LM, Wang H-W, Rondinone AJ, Anovitz LM, Wesolowski DJ, Whitfield PS. 2015. Solvothermal synthesis and surface chemistry to control the size and morphology of nanoquartz. Cryst Growth Des. 15(11):5327–5331.
  • Soozanipour A, Taheri-Kafrani A. 2018. Enzyme immobilization on functionalized graphene oxide nanosheets: efficient and robust biocatalysts. Methods Enzymol. 609:371–403.
  • Vinu A, Miyahara M, Ariga K. 2005. Biomaterial immobilization in nanoporous carbon molecular sieves: influence of solution pH, pore volume, and pore diameter. J Phys Chem B. 109(13):6436–6441.
  • Wang Q, Gao Q, Al-Enizi AM, Nafady A, Ma S. 2020. Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorg Chem Front. 7(2):300–339.
  • Winkler UK, Stuckmann M. 1979. Glycogen, Hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol. 138(3):663–670.
  • Yadav GD, Jadhav SR. 2005. Synthesis of reusable lipases by immobilization on hexagonal mesoporous silica and encapsulation in calcium alginate: transesterification in non-aqueous medium. Microporous Mesoporous Mat. 86(1–3):215–222.
  • Yang Q, Wang B, Zhang Z, Lou D, Tan J, Zhu L. 2017. The effects of macromolecular crowding and surface charge on the properties of an immobilized enzyme: activity, thermal stability, catalytic efficiency and reusability. RSC Adv. 7(60):38028–38036.
  • Yingli H, Lingmei D, Dehua L, Wei D, Yujun W. 2018. Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs). Renew Sust Energ Rev. 91:793–801.
  • Zadeh P, Åkerman B. 2017. Immobilization of enzymes in mesoporous silica particles: protein concentration and rotational mobility in the pores. J Phys Chem B. 121(12):2575–2583.
  • Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, Madeo F. 2012. FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 15(3):279–291.
  • Zhao J, Ma M, Zeng Z, Yu P, Gong D, Deng S. 2021. Production, purification and biochemical characterisation of a novel lipase from a newly identified lipolytic bacterium Staphylococcus caprae NCU S6. J Enzyme Inhib Med Chem. 36(1):248–256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.