508
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Chloroperoxidase applications in chemical synthesis of industrial relevance

, , &
Pages 403-420 | Received 14 Apr 2022, Accepted 24 Jul 2022, Published online: 09 Aug 2022

References

  • Aburto J, Correa-Basurto J, Torres E. 2008. Atypical kinetic behavior of chloroperoxidase-mediated oxidative halogenation of polycyclic aromatic hydrocarbons. Arch Biochem Biophys. 480(1):33–40.
  • Aguila S, Vazquez-Duhalt R, Tinoco R, Rivera M, Pecchi G, Alderete J. 2008. Stereoselective oxidation of R-(+)-limonene by chloroperoxidase from Caldariomyces fumago. Green Chem. 10(6):647–653.
  • Alabdalall A, Al-Anazi N, Aldakheel L, Amer F, Aldakheel F, Ababutain I, Alghamdi A, Al-Khaldi E. 2021. Application and characterization of crude fungal lipases used to degrade fat and oil wastes. Sci Rep. 11(1):19670.
  • Allain E, Hager L, Deng L, Jacobsen E. 1993. Highly enantioselective epoxidation of disubstituted alkenes with hydrogen peroxide catalyzed by chloroperoxidase. J Am Chem Soc. 115(10):4415–4416.
  • Archelas A, Furstoss R. 1997. Synthesis of enantiopure epoxides through biocatalytic approaches. Annu Rev Microbiol. 51:491–525.
  • Ayala M, Roman R, Vazquez-Duhalt R. 2007. A catalytic approach to estimate the redox potential of heme-peroxidases. Biochem Biophys Res Commun. 357(3):804–808.
  • Azevedo A, Martins V, Prazeres D, Vojinovic V, Cabral J, Fonseca L. 2003. Horseradish peroxidase: a valuable tool in biotechnology. Biotechnol Annu Rev. 9:199–247.
  • Banhegyi DF, Szolcsanyi D, Madarasz J, Palovics E. 2022. Enantiomeric separation of racemic amlodipine by sequential fractional crystallization through formation of diastereomeric salt solvates and co-crystals of solvate-like compounds with specific structure – a tandem resolution. Chirality. 34(2):374–395.
  • Bantleon R, Altenbuchner J, van Pee K. 1994. Chloroperoxidase from Streptomyces lividans: isolation and characterization of the enzyme and the corresponding gene. J Bacteriol. 176(8):2339–2347.
  • Barnett P, Hemrika W, Dekker H, Muijsers A, Renirie R, Wever R. 1998. Isolation, characterization, and primary structure of the vanadium chloroperoxidase from the fungus Embellisia didymospora. J Biol Chem. 273(36):23381–23387.
  • Bernhardt P, Okino T, Winter J, Miyanaga A, Moore B. 2011. A stereoselective vanadium-dependent chloroperoxidase in bacterial antibiotic biosynthesis. J Am Chem Soc. 133(12):4268–4270.
  • Bernhardt R. 2006. Cytochromes P450 as versatile biocatalysts. J Biotechnol. 124(1):128–145.
  • Bianchini L, Arruda M, Vieira S, Campelo P, Gregio A, Rosa E. 2015. Microbial biotransformation to obtain new antifungals. Front Microbiol. 6:1433.
  • Bilal M, Noreen S, Zdarta J, Mulla SI, Lou WY, Iqbal HMN. 2021. Enzyme-oriented strategies to mitigate polluting agents from environment. In: Microorganisms for sustainability. Berlin, Germany: Springer; p. 267–290.
  • Buchhaupt M, Ehrich K, Huttmann S, Guder J, Schrader J. 2011. Over-expression of chloroperoxidase in Caldariomyces fumago. Biotechnol Lett. 33(11):2225–2231.
  • Buchhaupt M, Hüttmann S, Schrader J. 2012. White mutants of chloroperoxidase-secreting Caldariomyces fumago as superior production strains, revealing an interaction between pigmentation and enzyme secretion. Appl Environ Microbiol. 78(16):5923–5925.
  • Buchhaupt M, Lintz K, Huttmann S, Schrader J. 2018. Partial secretome analysis of Caldariomyces fumago reveals extracellular production of the CPO co-substrate H2O2 and provides a coproduction concept for CPO and glucose oxidase. World J Microbiol Biotechnol. 34(2):24.
  • Buhaescu I, Izzedine H. 2007. Mevalonate pathway: a review of clinical and therapeutical implications. Clin Biochem. 40(9–10):575–584.
  • But A, Le Notre J, Scott E, Wever R, Sanders J. 2012. Selective oxidative decarboxylation of amino acids to produce industrially relevant nitriles by vanadium chloroperoxidase. ChemSusChem. 5(7):1199–1202.
  • But A, van Noord A, Poletto F, Sanders J, Franssen M, Scott E. 2017. Enzymatic halogenation and oxidation using an alcohol oxidase-vanadium chloroperoxidase cascade. Mol Cat. 443:92–100.
  • Butler A, Walker J. 1993. Marine haloperoxidases. Chem Rev. 93(5):1937–1944.
  • Caliskan Z, Soydan E, Kurt Gur G, Ordu E. 2020. Synthesis of new 4-oxo-tetrahydroindol derivatives by using chemical and microbial biotransformation methods. Polycycl Aromat Compd. 40(5):1390–1396.
  • Carmichael R, Pickard M. 1989. Continuous and batch production of chloroperoxidase by mycelial pellets of Caldariomyces fumago in an airlift fermentor. Appl Environ Microbiol. 55(1):17–20.
  • Carreno M. 1995. Applications of sulfoxides to asymmetric synthesis of biologically active compounds. Chem Rev. 95(6):1717–1760.
  • Catucci G, Ciaramella A, Di Nardo G, Zhang C, Castrignano S, Gilardi G. 2022. Molecular Lego of human domain flexibility for the activity of the chimeric proteins. Int J Mol Sci. 23(7):3618.
  • Catucci G, Valetti F, Sadeghi SJ, Gilardi G. 2020. Biochemical features of dye-decolorizing peroxidases: current impact on lignin degradation. Biotechnol Appl Biochem. 67(5):751–759.
  • Caverzan A, Casassola A, Patussi Brammer S. 2016. Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress. In: Abiotic and biotic stress in plants – recent advances and future perspectives. IntechOpen.doi.org/10.5772/61368
  • Chandra P, Enespa Singh R, Arora P. 2020. Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact. 19(1):169.
  • Chang S, Shen W. 2013. Stimulants, wakefulness-promoting agents, and nonstimulant attention deficit hyperactivity disorder medications. J Exp Clin Med. 5(6):210–216.
  • Chapman J, Ismail A, Dinu C. 2018. Industrial applications of enzymes: recent advances, techniques, and outlooks. Catalysts. 8(6):238.
  • Chen C, Li T. 2016. Bacterial dye-decolorizing peroxidases: biochemical properties and biotechnological opportunities. Phys Sci Rev. 1(9):20160051.
  • Ciaramella A, Catucci G, Di Nardo G, Sadeghi SJ, Gilardi G. 2020. Peroxide-driven catalysis of the heme domain of A. radioresistens cytochrome P450 116B5 for sustainable aromatic rings oxidation and drug metabolites production. N Biotechnol. 54:71–79.
  • Ciaramella A, Catucci G, Gilardi G, Di Nardo G. 2019. Crystal structure of bacterial CYP116B5 heme domain: new insights on class VII P450s structural flexibility and peroxygenase activity. Int J Biol Macromol. 140:577–587.
  • Clutterbuck P, Mukhopadhyay S, Oxford A, Raistrick H. 1940. Studies in the biochemistry of micro-organisms. Biochem J. 34(5):664–677.
  • Colonna S, Gaggero N, Casella L, Carrea G, Pasta P. 1993. Enantioselective epoxidation of styrene derivatives by chloroperoxidase catalysis. Tetrahedron. 4(6):1325–1330.
  • Colonna S, Gaggero N, Richelmi C, Pasta P. 1999. Recent biotechnological developments in the use of peroxidases. Trends Biotechnol. 17(4):163–168.
  • Conesa A, van Den Hondel C, Punt P. 2000. Studies on the production of fungal peroxidases in Aspergillus niger. Appl Environ Microbiol. 66(7):3016–3023.
  • Corbett M, Chipko B, Baden G. 1978. Chloroperoxidase-catalysed oxidation of 4-chloroaniline to 4-chloronitrosobenzene. Biochem J. 175(2):353–360.
  • Correa-Basurto J, Aburto J, T.-Ferrara J, Torres E. 2007. Ligand recognition by chloroperoxidase using molecular interaction fields and quantum chemistry calculations. Mol Simul. 33(8):649–654.
  • Correddu D, Di Nardo G, Gilardi G. 2021. Self-sufficient class VII cytochromes P450: from full-length structure to synthetic biology applications. Trends Biotechnol. 39(11):1184–1207. (
  • de Eugenio L, Peces-Perez R, Linde D, Prieto A, Barriuso J, Ruiz-Duenas F, Martinez M. 2021. Characterization of a dye-decolorizing peroxidase from Irpex lacteus expressed in Escherichia coli: an enzyme with wide substrate specificity able to transform lignosulfonates. JoF. 7(5):325.
  • Di Nardo G, Gilardi G. 2020. Natural compounds as pharmaceuticals: the key role of cytochromes P450 reactivity. Trends Biochem Sci. 45(6):511–525.
  • Dong J, Fernandez-Fueyo E, Li J, Guo Z, Renirie R, Wever R, Hollmann F. 2017. Halofunctionalization of alkenes by vanadium chloroperoxidase from Curvularia inaequalis. Chem Commun. 53(46):6207–6210.
  • Fajdek A, Wroblewska A, Milchert E. 2010. Significance and use of glycidol. Chemik. 64:1–7.
  • Fernandez-Fueyo E, van Wingerden M, Renirie R, Wever R, Ni Y, Holtmann D, Hollmann F. 2015. Chemoenzymatic halogenation of phenols by using the haloperoxidase from Curvularia inaequalis. ChemCatChem. 7(24):4035–4038.
  • Fernandez-Fueyo E, Younes S, Rootselaar S, Aben R, Renirie R, Wever R, Holtmann D, Rutjes F, Hollmann F. 2016. A biocatalytic aza-achmatowicz reaction. ACS Catal. 6(9):5904–5907.
  • Gao F, Wang L, Liu Y, Wang S, Jiang Y, Hu M, Li S, Zhai Q. 2015. Enzymatic synthesis of (R)-modafinil by chloroperoxidase-catalyzed enantioselective sulfoxidation of 2-(diphenylmethylthio) acetamide. Biochem Eng. J. 93:243–249.
  • Garcia-Zamora JL, Leon-Aguirre K, Quiroz-Morales R, Parra-Saldivar R, Gomez-Patino MB, Arrieta-Baez D, Rebollar-Perez G, Torres E. 2018. Chloroperoxidase-mediated halogenation of selected pharmaceutical micropollutants. Catalysts. 8(1):32.
  • Geigert J, Neidleman S, Dalietos D. 1983. Novel haloperoxidase substrates, alkynes and cyclopropanes. J Biol Chem. 258(4):2273–2277.
  • Getrey L, Krieg T, Hollmann F, Schrader J, Holtmann D. 2014. Enzymatic halogenation of the phenolic monoterpenes thymol and carvacrol with chloroperoxidase. Green Chem. 16(3):1104–1108.
  • Ghosh A, Brindisi M. 2016. Achmatowicz reaction and its application in the syntheses of bioactive molecules. HHS Public Access. 6:111564–111598.
  • Gosecki, M., Gadzinowski, M., Gosecka, M., Basinska, T. and Slomkowski, S. 2016. Polyglycidol, its derivatives, and polyglycidol-containing copolymers-synthesis and medical applications. Polymers 6(6):227.
  • Haldar S, Mulani FA, Aarthy T, Thulasiram HV. 2015. Whole-cell mediated 11β-hydroxylation on the basic limonoid skeleton by Cunninghamella echinulata. J Org Chem. 80(12):6490–6495.
  • Hallenberg P, Hager L. 1978. Purification of chloroperoxidase from Caldariomyces fumago. Methods Enzymol. 52:521–529.
  • He J, Zhang Y, Yuan Q, Liang H. 2019. Catalytic activity and application of immobilized chloroperoxidase by biometric magnetic nanoparticles. Ind Eng Chem Res. 58(8):3555–3560.
  • Hofler GT, But A, Hollmann F. 2019. Haloperoxidases as catalysts in organic synthesis. Org Biomol Chem. 17(42):9267–9274.
  • Hofler GT, But A, Younes S, Wever R, Paul C, Arends I, Hollmann F. 2020. Chemoenzymatic halocyclization of 4-pentenoic acis at preparative scale. ACS Sustain Chem Eng. 8(7):2602–2607.
  • Hofrichter M, Ullrich R, Pecyna M, Liers C, Lundell T. 2010. New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol. 87(3):871–897.
  • Huster M, Muller-Renno C, Ziegler C, Schlegel C, Ulber R, Muffler K. 2016. Chloroperoxidase production by Caldariomyces fumago biofilms. Eng Life Sci. 16(1):88–92.
  • Kaithal A, Holscher M, Leitner W. 2020. Carbon monoxide and hydrogen (syngas) as a C1-building block for selective catalytic methylation. Chem Sci. 12(3):976–982.
  • Kaup B, Ehrich K, Pescheck M, Schrader J. 2008. Microparticle enhanced cultivation of filamentous microorganisms: increased chloroperoxidase formation by Caldariomyces fumago as an example. Biotechnol Bioeng. 99(3):491–498.
  • Kiljunen E, Kanerva L. 1999. Novel applications of chloroperoxidase: enantioselective oxidation of racemic epoxyalcohols. Tetrahedron Asymm. 10(18):3529–3535.
  • Krieg T, Huttmann S, Mangold K, Schrader J, Holtmann D. 2011. Gas diffusion electrode as novel reaction for an electro-enzymatic process with chloroperoxidase. Green Chem. 13(10):2686–2689.
  • Kuhnel K, Blankenfeldt W, Terner J, Schlichting I. 2006. Crystal structures of chloroperoxidase with its bound substrates and complexed with formate, acetate, and nitrate. J Biol Chem. 281(33):23990–23998.
  • La Rotta H CE, D elia E, Bon EP. 2007. Chloroperoxidase mediated oxidation of chlorinated phenols using electrogenerated hydrogen peroxide. Electron J Biotechnol. 10(1):0–36.
  • Lathem A, Benjamin L, Marc A, Zachariah M. 2017. Comparison of intramolecular and intermolecular ammonium and phosphonium borohydrides in hydrogen‐, proton‐, and hydride‐transfer reactions. Eur J Inorg Chem. 2017(13):2032–2039.
  • Le T, Chan S, Ebaid B, Sommerhalter M. 2015. Silica sol-gel entrapment of the enzyme chloroperoxidase. J Nano. 2015:1–10.
  • Lewis T, Stone WL. 2021. Biochemistry, proteins enzymes. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
  • Li A, Acevedo-Rocha CG, Reetz MT. 2018. Boosting the efficiency of site-saturation mutagenesis for a difficult-to-randomize gene by a two-step PCR strategy. Appl Microbiol Biotechnol. 102(14):6095–6103. doi:10.1007/s00253-018-9041-2. 29785500
  • Lichtenecker RJ, Schmid W. 2009. Application of various ionic liquids as cosolvents for chloroperoxidase-catalysed biotransformations. Monatsh Chem. 140(5):509–512.
  • Liers C, Aranda E, Strittmatter E, Piontek K, Plattner DA, Zorn H, Ullrich R, Hofrichter M. 2014. Phenol oxidation by DyP-type peroxidases in comparison to fungal and plant peroxidases. J Mol Catal B Enzym. 103:41–46.
  • Liu J, Wang M. 2007. Improvement of activity and stability of chloroperoxidase by chemical modification. BMC Biotechnol. 7(1):23–28.
  • Lopez-Hernandez J, Flores-Vela A, Marquez-Rocha F. 2017. Formation of 3',3",5',5"-tetrabromophenol sulfonphthalein from phenolsulfonphtalein catalyzed by chloroperoxidase of Caldariomyces fumago. Int J Curr Res. 9:45401–45405.
  • Mączka W, Wińska K, Grabarczyk M. 2018. Biotechnological methods of sulfoxidation: yesterday, today, tomorrow. Catalysts. 8(12):624.
  • Makarov A, Uchuskin M, Trushkov I. 2018. Furan oxidation reactions in the total synthesis of natural products. Synthesis. 50(16):3059–3086.
  • Manjrekar S, Wadekar T, Sumant O. 2021. Enzymes market, allied market research. https://www.alliedmarketresearch.com/enzymes-market
  • Marshall G, Wright G. 1996. Purification and characterization of two haloperoxidases from the glycopeptide antibiotic producer Streptomyces toyocaensis NRRL 15009. Biochem Biophys Res Commun. 219(2):580–583.
  • Mayolo-Deloisa K, Gonzalez-Gonzalez M, Rito-Palomares M. 2020. Laccases in food industry: bioprocessing, potential industrial and biotechnological applications. Front Bioeng Biotechnol. 8:222. (
  • McCarthy M, White R. 1983. Functional differences between peroxidase compound I and the cytochrome P-450 reactive oxygen intermediate. J Biol Chem. 258(15):9153–9158.
  • McKinnie S, Miles Z, Moore B. 2018. Characterization and biochemical assays of streptomyces vanadium-dependent chloroperoxidases. Methods Enzymol. 604:405–424.
  • Messerschmidt A, Wever R. 1995. X-ray structure of a vanadium-containing enzyme: chloroperoxidase from the fungus Curvularia inaequalis. J Inorg Biochem. 59(2–3):580.
  • Morris D, Hager L. 1966. Chloroperoxidase: isolation and properties of the crystalline glycoprotein. J Biol Chem. 241(8):1763–1768.
  • Mubarak MQE, Gerard EF, Blanford CF, Hay S, de Visser SP. 2020. How do vanadium chloroperoxidases generate hypochlorite from hydrogen peroxide and chloride? A computational study. ACS Catal. 10(23):14067–14079.
  • Muñoz-Guerrero FA, Águila S, Vazquez-Duhalt R, Alderete JB. 2015. Enhancement of operational stability of chloroperoxidase from Caldariomyces fumago by immobilization onto mesoporous supports and the use of co-solvents. J Mol Catal B Enzym. 116:1–8.
  • Narayanan R, Zhu G, Wang P. 2007. Stabilization of interface-binding chloroperoxidase for interfacial biotransformation. J Biotechnol. 128(1):86–92.
  • Nouri M, Khodaiyan F. 2020. Magnetic biocatalysts of pectinase: synthesis by macromolecular cross-linker for application in apple juice clarification. Food Technol Biotechnol. 58(4):391–401.
  • Ortiz-Bermúdez P, Srebotnik E, Hammel KE. 2003. Chlorination and cleavage of lignin structures by fungal chloroperoxidases. Appl Environ Microbiol. 69(8):5015–5018.
  • Pandey V, Awasthi M, Singh S, Tiwari S, Dwivedi U. 2017. A comprehensive review on function and application of plant peroxidases. Biochem Anal Biochem. 6(1):308. doi: 10.4172/2161-1009.1000308
  • Park J, Douglas C. 2006. Deactivation mechanisms of chloroperoxidase during biotransformations. Biotechnol Bioeng. 93(6):1190–1195.
  • Passardi F, Theiler G, Zamocky M, Cosio C, Rouhier N, Teixera F, Margis-Pinheiro M, Ioannidis V, Penel C, Falquet L, et al. 2007. PeroxiBase: the peroxidase database. Phytochem. 68(12):1605–1611.
  • Pelicano H, Carney D, Huang P. 2004. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat. 7(2):97–110.
  • Pinto A, Contente M, Tamborini L. 2020. Advances on whole-cell biocatalysis in flow. Curr Opin Green Sustain Chem. 25:100343.
  • Prieto I, Klimm A, Roldan F, Vetter W, Arbeli Z. 2021. Evidence for cometabolic transformation of weathered toxaphene under aerobic conditions using camphor as a co-substrate. J Appl Microbiol. 131(1):221–235.
  • Raghavan S, Krishnaiah V, Sridhar B. 2010. Asymmetric synthesis of the potent HIV-protease inhibitor, nelfinavir. J Org Chem. 75(2):498–501.
  • Rai G, Sakai S, Florez A, Mogollon L, Hager L. 2001. Directed evolution of chloroperoxidase for improved expoxidation and chlorination catalysis. Adv Synth Catal. 343(6–7):637–638.
  • Ran T, Jiao L, Wang W, Chen J, Chi H, Lu Z, Zhang C, Xu D, Lu F. 2021. Structures of l-asparaginase from Bacillus licheniformis reveal an essential residue for its substrate stereoselectivity. J Agric Food Chem. 69(1):223–231.
  • Rathbone DA, Bruce NC. 2002. Microbial transformation of alkaloids. Curr Opin Microbiol. 5(3):274–281.
  • Rinaldi I, Hamonangan R, Azizi MS, Cahyanur R, Wirawan F, Fatya AI, Budiananti A, Winston K. 2021. Diagnostic value of neutrophil lymphocyte ratio and D-dimer as biological markers of deep vein thrombosis in patients presenting with unilateral limb edema. J Blood Med. 12:313–325.
  • Robinson P. 2015. Enzymes: principles and biotechnological applications. Essays Biochem. 59:1–41.
  • Rudrangi S, Bontha V, Manda V, Bethi S. 2011. Oxindoles and their pharmaceutical significance- an overview. Asian J Res Chem. 4:335–338.
  • Saby C, Luong J. 1998. A biosensor system for chlorophenols using chloroperoxidase and a glucose oxidase based amperometric electrode. Electroanalysis. 10(1):7–11.
  • Sandi J, Mata-Araya I, Aguilar F. 2020. Diversity of lipase-producing microorganisms from tropical oilseeds Elaeis guineensis, Ricinus communis, and Jatropha curcas L. from costa rica. Curr Microbiol. 77(6):943–952.
  • Sawant AM, Vamkudoth KR. 2022. Biosynthetic process and strain improvement approaches for industrial penicillin production. Biotechnol Lett. 44(2):179–192.
  • Sawant AM, Sunder AV, Vamkudoth KR, Ramasamy S, Pundle A. 2020. Process development for 6-aminopenicillanic acid production using lentikats-encapsulated Escherichia coli cells expressing penicillin V acylase. ACS Omega. 5(45):28972–28976.
  • Shahangian S, Hager L. 1981. The reaction of chloroperoxidase with chlorite and chlorine dioxide. J Biol Chem. 256(12):6034–6040.
  • Sharma A, Vazquez L, Hernandez E, Becerril M, Oza G, Ahmed S, Ramalingam S, Iqbal H. 2022. Green remediation potential of immobilized oxidoreductases to treat halo-organic pollutants persist in wastewater and soil matrices – a way forward. Chemosphere. 290:133305.
  • Shaw P, Beckwith J, Hager L. 1959. Biological chlorination: the biosynthesis of δ-chlorolevulinic acid. J Biol Chem. 234:2560–2564.
  • Sheldon R, Brady D, Bode M. 2020. The Hitchhiker’s guide to biocatalysis: recent advances in the use of enzymes in organic synthesis. Chem Sci. 11(10):2587–2605.
  • Siddiqui M, Jabeen A, Wang Y, Wang W, Choudhary MI. 2020. Whole-cell fungal-mediated structural transformation of anabolic drug metenolone acetate into potent anti-inflammatory metabolites. J Adv Res. 24:69–78.
  • Simons B, Barnett P, Vollenbroek E, Dekker H, Muijsers A, Messerschmidt A, Wever R. 1995. Primary structure and characterization of the vanadium chloroperoxidase from the fungus Curvularia inaequails. Eur J Biochem. 229(2):566–574.
  • Singh R, Kumar M, Mittal A, Mehta P. 2016. Microbial enzymes: industrial progress in 21st century. 3 Biotech. 6(2):174.
  • Soltan M, Elsamadony M, Mostafa A, Awad H, Tawfik A. 2019. Nutrient’s balance for hydrogen potential upgrading from fruit and vegetable peels via fermentation process. J Environ Manage. 242:384–393.
  • Spreti N, Germani R, Incani A, Savelli G. 2004. Stabilization of chloroperoxidase by polyethylene glycols in aqueous media: kinetic studies and synthetic applications. Biotechnol Prog. 20(1):96–101.
  • Sundaramoorthy M, Terner J, Poulos T. 1995. The crystal structure of chloroperoxidase: a heme peroxidase–cytochrome P450 functional hybrid. Structure. 3(12):1367–1378.
  • Thiel D, Blume F, Jager C, Deska J. 2018. Chloroperoxidase-catalyzed Achmatowicz rearrangements. Eur J Org Chem. 2018(20–21):2717–2725.
  • Usman M, Dabai AI. 2021. Studies on lignin degradation activity by Pseudomonas aeruginosa isolated from Kware Lake. JAMB. 21(3):36–45.
  • van der Pijl F, van Delft F, Rutjes F. 2015. The aza- achmatowicz reaction: facile entry into functionalized piperidinones. Eur J Org Chem. 2015(22):4811–4829.
  • Van Deurzen MPJ, van Rantwijk F, Sheldon RA. 1997. Chloroperoxidase-catalyzed oxidation of 5-hydroxymethylfurfural. J Carbohydr Chem. 16(3):299–309.
  • Wang X, Tachikawa H, Yi X, Manoj K, Hager L. 2003. Two-dimensional NMR study of the heme active site structure of chloroperoxidase. J Biol Chem. 278(10):7765–7774.
  • Wiesner W, van Pée KH, Lingens F. 1988. Purification and characterization of a novel bacterial non-heme chloroperoxidase from Pseudomonas pyrrocinia. J Biol Chem. 263(27):13725–13732.
  • Wiktor M, Caffrey M. 2018. Biophysical characterization and stabilization of detergent-solubilized lipoprotein N-acyl transferase from P. aeruginosa and E. coli. Biochem Biophys Acta Biomembr. 1860(6):1384–1393.
  • Winter J, Moore B. 2009. Exploring the chemistry and biology of vanadium-dependent haloperoxidases. J Biol Chem. 284(28):18577–18581.
  • Wu Q, He Z, Wang X, Zhang Q, Wei Q, Ma S, Ma C, Li J, Wang Q. 2019. Cascade enzymes within self-assembled hybrid nanogel mimicked neutrophil lysosomes for singlet oxygen elevated cancer therapy. Nat Commun. 10(1):1–14.
  • Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. 2021. Biocatalysis: enzymatic synthesis for industrial applications. Angew Chem Int Ed. 60(1):88–119.
  • Xiao L, Ding Y, Zhai Q, Hu M, Li S, Wang Y, Chen Y, Jiang Y. 2019. Enzymatic biosensor for hydrogen peroxide based on the direct electron transfer on MWCNTs/IL/CPO-GC: the dual function of ionic liquids. J Electrochem Soc. 166(8):G67–74.
  • Yang J, Gao T, Zhang Y, Wang S, Li H, Li S, Wang S. 2019. Degradation of the phenolic β-ether lignin model dimer and dyes by dye-decolorizing peroxidase from Bacillus amyloliquefaciens. Biotechnol Lett. 41(8–9):1015–1021.
  • Yi X, Conesa A, Punt P, Hager L. 2003. Examining the role of glutamic acid 183 in chloroperoxidase catalysis. J Biol Chem. 278(16):13855–13859.
  • Younes S, Tieves F, Lan D, Wang Y, Suounes S, Tieves F, Lan D, Wang YS. 2020. Chemoenzymatic halocyclization of γ,δ-unsaturated carboxylic acids and alcohols. ChemSusChem. 12:1–6.
  • Yucheng J, Yu D, Mancheng H, Shuni L, Quanguo Z. 2015. Method for synthesis of chiral drug fosfomycin preparation through chloroperoxidase one-step catalytic method. https://patents.google.com/patent/CN105524953A/e.
  • Zhang C, Catucci G, Nardo G, Gilardi G. 2020. Effector role of cytochrome P450 reductase for androstenedione binding to human aromatase. Int J Biol Macromol. 164:510–517.
  • Zhang C, Zhang L, Wu W, Gao F, Li R, Song W, Zhuang Z, Liu C, Zhang X. 2019. Artificial super neutrophils for inflammation targeting and HClO generation against tumors and infections. Adv Mater. 31(19):1901179.
  • Zhang Q, Wu J, Wang J, Wang X, Wu C, Chen M, Wu Q, Lesniak M, Mi Y, Cheng Y, et al. 2020. A neutrophil-inspired supramolecular nanogel for magnetocaloric-enzymatic tandem therapy. Angew Chem Int Ed Engl. 59(9):3732–3738.
  • Zheng M, Zhao Y, Miao L, Gao X, Liu Z. 2021. Advances in bioremediation of polycyclic aromatic hydrocarbons contaminated soil. Sheng Wu Gong Cheng Xue Bao. 37(10):3535–3548.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.