198
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Enzymatic degradation and metabolic pathway of acid blue 129 dye by crude laccase from newly isolated Trametes hirsuta EDN 082

ORCID Icon, ORCID Icon & ORCID Icon
Pages 129-139 | Received 09 May 2022, Accepted 14 Oct 2022, Published online: 02 Nov 2022

References

  • Akkaya A, Ozseker EE, Akdogan HA. 2016. Degradation of dyes by laccase. Anal Lett. 49(6):790–798.
  • Alam R, Ardiati FC, Solihat NN, Alam MB, Lee SH, Yanto DHY, Watanabe T, Kim S. 2021. Biodegradation and metabolic pathway of antharaquinone dyes by Trametes hirsuta D7 immobilized in light expanded clay aggregate and cytotoxicity assessment. J Hazard Mater. 405:124176.
  • Almeida EJR, Corso CR. 2019. Decolorization and removal of toxicity of textile azo dyes using fungal biomass pelletized. Int J Environ Sci Technol. 16(3):1319–1328.
  • Anita SH, Ardiati FC, Oktaviani M, Sari FP, Nurhayat OD, Ramadhan KP, Yanto DHY. 2020. Immobilization of laccase from Trametes hirsuta EDN 082 in light expanded clay aggregate for decolorization of Remazol Brilliant Blue R dye. Bioresour Technol Rep. 12:100602.
  • Anita SH, Sari FP, Yanto DHY. 2019. Decolorization of synthetic dyes by ligninolytic enzymes from Trametes hirsuta D7. Makara J Sci. 23:44–50.
  • Aruna B, Silvia LR, Kumar ES, Rani PR, Lakshmi DV, Prasad DVR. 2015. Biodecolorization of anthraquinone textile (acid blue 25) dye by Klebsiella Sp. Int J Recent Sci Res. 6:3216–3222.
  • Baena-Baldiris D, Montes-Robledo A, Baldiris-Avila R. 2020. Franconibacter sp., 1MS: a new strain in decolorization and degradation of azo dyes Ponceau S Red and Methyl Orange. ACS Omega. 5(43):28146–28157.
  • Becelic-Tomin M, Dalmacija B, Rajic L, Tomasevic D, Kerkez D, Watson M, Prica M. 2014. Degradation of anthraquinone dye reactive blue 4 in pyrite ash catalysed Fenton reaction. ScientificWorldJ. 2014:234654.
  • Begum S, Narwade VN, Halge DI, Jejurikar SM, Dadge JW, Muduli S, Mahabole MP, Bogle KA. 2020. Remarkable photocatalytic degradation of Remazol Brilliant Blue R dye using bio-photocatalyst 'nano-hydroxyapatite. Mater Res Express. 7(2):025013.
  • Chairin T, Nitheranont T, Watanabe A, Asada Y, Khanongnuch C, Lumyong S. 2013. Biodegradation of bisphenol A and decolorization of synthetic dyes by laccase from white-rot fungus, Trametes polyzona. Appl Biochem Biotechnol. 169(2):539–545.
  • Chaudhari AU, Paul D, Dhotre D, Kodam KM. 2017. Effective biotransformation and detoxification of anthraquinone dye reactive blue 4 by using aerobic bacterial granules. Water Res. 122:603–613.
  • Christiane A, Steeve M, Jean-Bosco SH, Kor NM, Brama I, Eric G, Philippe G. 2013. Biodegradation of reactive blue 4 and orange G by Pycnoporus sanguineus strain isolated in Gabon. J Bioremed Biodegrad. 4:206.
  • Das A, Mishra S. 2017. Removal of textile dye reactive green-19 using bacterial consortium: process optimization using response surface methodology and kinetics study. J Environ Chem Eng. 5(1):612–627.
  • Edoamodu CE, Nwodo UU. 2021. Enterobacter sp. AI1 produced a thermo-acidic-tolerant laccase with a high potential for textile dyes degradation. Biocatal Agric Biotechnol. 38:102206.
  • El-Tayeb A, El-Shazly H, Elkady MF, Abdel-Rahman A. 2015. Decolorization of acid blue 25 dye by non-thermal plasma advanced oxidation process for industrial wastewater treatment. In IEEE, 5th Int. Conf. Environ. Elect. Eng. (EEEIC), Rome. pp. 807–812.
  • Eskandarian M, Mahdizadeh F, Ghalamchi L, Naghavi S. 2014. Bio-fenton process for acid blue 113 textile azo dye decolorization: characteristics and neural network modelling. Desalin Water Treat. 52(25–27):4990–4998.
  • Fat’hi MR, Asfaram A, Hadipour A, Roosta M. 2014. Kinetics and thermodynamic studies for removal of acid blue 129 from aqueous solution by almond shell. J Environ Health Sci Eng. 12(1):62–67.
  • Ghanei M, Rashidi A, Tayebi HA, Yazdanshenas ME. 2018. Removal of acid blue 25 from aqueous media by magnetic-SBA-15/CPAA super adsorbent: adsorption isotherm, kinetic, and thermodynamic studies. J Chem Eng Data. 63(9):3592–3605.
  • Ghodbane H, Hamdaoui O. 2010. Decolorization of anthraquinone dye, CI. acid blue 25, in aqueous solution by direct UV irradiation, UV/H2O2 and UV/Fe(II) processes. Chem Eng J. 160(1):226–231.
  • Ghodbane H, Hamdaoui O, Merouani S. 2017. Degradation of C.I. acid blue 25 in water using UV/K2S2O8 process: effect of salts and environmental matrix. DWT. 74:395–401.
  • Gómez-Toribio V, García-Martín AB, Martínez MJ, Martínez AT, Guillén F. 2009. Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling. Appl Environ Microbiol. 75(12):3944–3953.
  • Goszcz K, Deakin SJ, Duthie GG, Stewart D, Megson IL. 2017. Bioavailable concentrations of delphinidin and its metabolite, gallic acid, induce antioxidant protection associated with increased intracellular glutathione in cultured endothelial cell. Oxid Med Cell Longev. 2017:9260701.
  • He P, Aga DS. 2019. Comparison of GC-MS/MS and LC-MS/MS for the analysis of hormones and pesticides in surface waters: advantages and pitfalls. Anal Methods. 11(11):1436–1448.
  • Hsu CA, Wen TN, Su YC, Jiang ZB, Chen CW, Shyur LF. 2012. Biological degradation of anthraquinone and azo dyes by a novel laccase from Lentinus sp. Environ Sci Technol. 46(9):5109–5117.
  • Jasińska A, Soboń A, Góralczyk-Bińkowska A, Długoński J. 2019. Analysis of decolorization potential of Mycrothecium roridum in the light of its secretome and toxicological studies. Environ Sci Pollut Res Int. 26(25):26313–26323.
  • John E, Ashitha VC. 2010. Acute toxic effects of the textile dye, acid blue 113, on the biochemicals of teleost fish, Tilapia mossambica (Peteres) (Pisces: Teleostei, Cichlidae). Biosci Biotechnol Res Asia. 7(1):395–400.
  • Joshi AU, Hinsu AT, Kotadiya RJ, Rank JK, Andharia KN, Kothari RK. 2020. Decolorization and biodegradation of textile di-azo dye acid blue 113 by Pseudomonas stutzeri AK6. 3 Biotech. 10(5):214.
  • Khanna A, Shetty KV. 2014. Solar light-driven photocatalytic degradation of anthraquinone dye-contaminated water by engineered Ag@TiO2 core-shell nanoparticles. Desalin Water Treat. p. 1–14.
  • Krawczyk K, Wacławek S, Kudlek E, Silvestri D, Kukulski T, Grübel K, Padil VVT, Černík M. 2020. UV-catalyzed persulfate oxidation of an anthraquinone based dye. Catalyst. 10(4):456.
  • Krishna C, Nokes SE. 2001. Predicting vegetative inoculum performance to maximize phytase production in solid-state fermentation using response surface methodology. J Ind Microbiol Biotechnol. 26(3):161–170.
  • Krishnan S, Prabhu Y, Phale PS. 2004. O-Phtalic acid, a dead-end product in one of the two pathways of phenanthrene degradation in Pseudomonas sp. Strain PP2. Indian J Biochem Biophys. 40:227–232.
  • Lee AH, Jang Y, Kim GH, Kim JJ, Lee SS, Ahn BJ. 2017. Decolorizing an anthraquinone dye by Phlebiabrevispora: intra-species characterization. Eng Life Sci. 17(2):125–131.
  • Marcelo CR, Puiatti GA, Nascimento MA, Oliveira AF, Lopes RP. 2018. Degradation of the reactive blue 4 dye in aqueous solution using zero-valent copper nanoparticles. J Nanomater. 2018:1–9.
  • Maurer HH. 2021. Hyphenated high-resolution mass spectrometry—the “all-in-one” device in analytical toxicology? Anal Bioanal Chem. 413(9):2303–2309.
  • Miron AR, Modrogan C, Orbulet OD, Costache C, Popescu I. 2010. Treatment of acid blue 25 containing wastewaters by electrocoagulation. U P B Sci Bull Ser B. 72:93–100.
  • Murugesan K, Dhamija A, Nam IH, Kim YM, Chang YS. 2007. Decolorization of reactive black 5 by laccase: optimization by response surface methodology. Dyes Pigm. 75(1):176–184.
  • Nurhayat OD, Ardiati FC, Ramadhan KP, Anita SH, Okano H, Watanabe T, Yanto DHY. 2022. Bioprospecting three newly isolated white-rot fungi from Berbak-Sembilang National Park, Indonesia for biodecolorization of anthraquinone and azo dyes. Biodiversitas. 23(2):613–623.
  • Parmar ND, Shukla SR. 2018. Biodegradation of anthraquinone based dye using an isolated strain Staphylococcus hominis supsp. Hominis DSM 20328. Environ Prog Sustain Energy. 37(1):203–214.
  • Perlatti B, Silva MFGF, Fernandes JB, Forim MR. 2012. Validation and application of HPLC–ESI-MS MS method for the quantification of RBBR decolorization, a model for highly toxic molecules, using several fungi strains. Bioresour Technol. 124:37–44.
  • Rawat D, Mishra V, Sharma RS. 2016. Detoxification of azo dyes in the context of environmental processes. Chemosphere. 155:591–605.
  • Rawat D, Sharma RS, Karmakar S, Arora LS, Mishra V. 2018. Ecotoxic potential of a presumably non-toxic azo dyes. Ecotoxicol Environ Saf. 148:528–537.
  • Richardson SD, Ternes TA. 2018. Water analysis: emerging contaminants and current issues. Anal Chem. 90(1):398–428.
  • Routoula E, Patwardhan SV. 2020. Degradation of anthraquinone dyes from effluents: a review focusing on enzymatic dye degradation with industrial potential. Environ Sci Technol. 54(2):647–664.
  • Rybczyńska-Tkaczyk K, Korniłłowicz-Kowalska T, Szychowski KA, Gmiński J. 2020. Biotransformation and toxicity effect of monoanthraquinone dyes during Bjerkandera adusta CCBAS 930 cultures. Ecotoxicol Environ Saf. 191:110203.
  • Saba B, Christy AD, Park T, Yu Z, Li K, Tuovinen OH. 2018. Decolorization of reactive black 5 and reactive blue 4 dyes in microbial fuel cells. Appl Biochem Biotechnol. 186(4):1017–1033.
  • Seyedi ZS, Zahraei Z, Jookar Kashi F. 2020. Decolorization of reactive black 5 and reactive red 152 azo dyes by new haloalkaliphilic bacteria isolated from the textile wastewater. Curr Microbiol. 77(9):2084–2092.
  • Seid-Mohammadi A, Shabanloo A, Fazlzadeh M, Poureshgh Y. 2017. Degradation of acid blue 113 by US/H2O2/Fe2+ and US/S2O82-/Fe2+ process from aqueous solutions. DWT. 78:273–280.
  • Shanmugam BK, Easwaran SN, Lakra R, Deepa PR, Mahadevan S. 2017. Metabolic pathway and role of individual species in the bacterial consortium for biodegradation of azo dye: a biocalorimetric investigation. Chemosphere. 188:81–89.
  • Shirin S, Balakrishnan VK. 2011. Using chemical reactivity to provide insights into environmental transformations of priority organic substances the Fe0-mediated reduction of acid blue 129. Environ Sci Technol. 45(24):10369–10377.
  • Si J, Cui BK, Dai YC. 2013. Decolorization of chemically different dyes by white-rot fungi in submerged cultures. Ann Microbiol. 63(3):1099–1108.
  • Srivastava A, Shukla S, Jangid NK, Srivastava M, Vishwakarma R. 2022. World of the Dye. Pennsylvania, PA: IG Global Publication.
  • Uber TM, Buzzo AJdR, Scaratti G, Amorim SM, Helm CV, Maciel GM, Peralta RA, Moreira RdFPM, Bracht A, Peralta RM. 2022. Comparative detoxification of Remazol Brilliant Blue R by free and immobilized laccase of Oudemansiella canarii. Biocatal Biotransform. 40(1):17–28.
  • Vila J, López Z, Sabaté J, Minguillón C, Solanas AM, Grifoll M. 2001. Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. Strain AP1: actions of the isolate on two and three-ring polycyclic aromatic hydrocarbons. Appl Environ Microbiol. 67(12):5497–5505.
  • Wang Y-J, Xu K-Z, Ma H, Liao X-R, Guo G, Tian F, Guan Z-B. 2020. Recombinant horseradish peroxidase C1A immobilized on hydrogel matrix for dye decolorization and its mechanism on acid blue 129 decolorization. Appl Biochem Biotechnol. 192(3):861–880.
  • Yanto DHY, Auliana N, Anita SH, Watanabe T. 2019. Decolorization of synthetic textile dyes by laccase from newly isolated Trametes hirsuta EDN084 mediated by violuric acid. IOP Conf Ser: Earth Environ Sci. 374(1):012005.
  • Yemendzhiev H, Alexieva Z, Krastanov A. 2009. Decolorization of synthetic dye reactive blue 4 by mycelial culture of white-rot fungi Trametes versicolor 1. Biotechnol Biotechnol Equip. 23(Suppl 1):230–232.
  • Zeng X, Cai Y, Liao X, Zeng X, Li W, Zhang D. 2011. Decolorization of synthetic dyes by crude laccase from a newly isolated Trametes trogii strain cultivated on solid agro-industrial residue. J Hazard Mater. 187(1–3):517–525.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.