94
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Improving hydrogen peroxide stability of a dye-decolorising peroxidase from Irpex lacteus F17 by site-directed mutagenesis

, , &
Pages 366-377 | Received 25 Apr 2023, Accepted 20 Jun 2023, Published online: 04 Jul 2023

References

  • Alessa AHA, Tee KL, Gonzalez-Perez D, Omar Ali HEM, Evans CA, Trevaskis A, Xu JH, Wong TS. 2019. Accelerated directed evolution of dye-decolorizing peroxidase using a bacterial extracellular protein secretion system (BENNY). Bioresour Bioprocess. 6(1):20. doi: 10.1186/s40643-019-0255-7.
  • Amara S, Perrot T, Navarro D, Deroy A, Benkhelfallah A, Chalak A, Daou M, Chevret D, Faulds CB, Berrin J-G, et al. 2018. Enzyme activities of two recombinant heme- containing peroxidases, tvdyp1 and tvvp2, identified from the secretome of trametes versicolor. Appl Environ Microbiol. 84(8):e02826-17. doi: 10.1128/AEM.02826-17.
  • Arnao MB, Acosta M, del Río JA, Varón R, García-Cánovas F. 1990. A kinetic-study on the suicide inactivation of peroxidase by hydrogen-peroxide. Biochim Biophys Acta. 1041(1):43–47. doi: 10.1016/0167-4838(90)90120-5.
  • Baratto MC, Sinicropi A, Linde D, Saez-Jimenez V, Sorace L, Ruiz-Duenas FJ, Martinez AT, Basosi R, Pogni R. 2015. Redox-active sites in Auricularia auricula-judae dye-decolorizing peroxidase and several directed variants: a multifrequency EPR study. J Phys Chem B. 119(43):13583–13592. doi: 10.1021/acs.jpcb.5b02961.
  • Catucci G, Valetti F, Sadeghi SJ, Gilardi G. 2020. Biochemical features of dye-decolorizing peroxidases: current impact on lignin degradation. Biotechnol Appl Biochem. 67(5):751–759. doi: 10.1002/bab.2015.
  • de Eugenio LI, Peces-Perez R, Linde D, Prieto A, Barriuso J, Ruiz-Duenas FJ, Martinez MJ. 2021. Characterization of a dye-decolorizing peroxidase from Irpex lacteus expressed in Escherichia coli: an enzyme with wide substrate specificity able to transform lignosulfonates. JOF. 7(5):325. doi: 10.3390/jof7050325.
  • Dhankhar P, Dalal V, Mahto JK, Gurjar BR, Tomar S, Sharma AK, Kumar P. 2020. Characterization of dye-decolorizing peroxidase from Bacillus subtilis. Arch Biochem Biophys. 693:108590. doi: 10.1016/j.abb.2020.108590.
  • Duan Z, Shen R, Liu B, Yao M, Jia R. 2018. Comprehensive investigation of a dye-decolorizing peroxidase and a manganese peroxidase from Irpex lacteus F17, a lignin-degrading basidiomycete. AMB Express. 8(1):119. doi: 10.1186/s13568-018-0648-6.
  • Ilić Đurđić K, Ece S, Ostafe R, Vogel S, Schillberg S, Fischer R, Prodanović R. 2020. Improvement in oxidative stability of versatile peroxidase by flow cytometry-based high-throughput screening system. Biochem Eng J. 157:107555. doi: 10.1016/j.bej.2020.107555.
  • Jiang H, Jia W, Duan M, Lin H, Huang J, Li X, Shu Z. 2020. Enhancement of hydrogen peroxide tolerance of lipase lipa from Bacillus subtilis using semi-rational design. Biochem Eng J. 159:107590. doi: 10.1016/j.bej.2020.107590.
  • Kim SJ, Ishikawa K, Hirai M, Shoda M. 1995. Characteristics of a newly isolated fungus, Geotrichum candidum Dec 1, which decolorizes various dyes. J Ferment Bioeng. 79(6):601–607. doi: 10.1016/0922-338X(95)94755-G.
  • Kim SJ, Shoda M. 1999. Purification and characterization of a novel peroxidase from Ggeotrichum candidum dec 1 involved in decolorization of dyes. Appl Environ Microbiol. 65(3):1029–1035. doi: 10.1128/AEM.65.3.1029-1035.1999.
  • Kim YH, Berry AH, Spencer DS, Stites WE. 2001. Comparing the effect on protein stability of methionine oxidation versus mutagenesis: steps toward engineering oxidative resistance in proteins. Protein Eng. 14(5):343–347. doi: 10.1093/protein/14.5.343.
  • Kitajima S, Kurioka M, Yoshimoto T, Shindo M, Kanaori K, Tajima K, Oda K. 2008. A cysteine residue near the propionate side chain of heme is the radical site in ascorbate peroxidase. FEBS J. 275(3):470–480. doi: 10.1111/j.1742-4658.2007.06214.x.
  • Liers C, Bobeth C, Pecyna M, Ullrich R, Hofrichter M. 2010. Dyp-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl Microbiol Biotechnol. 85(6):1869–1879. doi: 10.1007/s00253-009-2173-7.
  • Li L-L, Yuan H, Liao F, He B, Gao S-Q, Wen G-B, Tan X, Lin Y-W. 2017. Rational design of artificial dye-decolorizing peroxidases using myoglobin by engineering Tyr/Trp in the heme center. Dalton Trans. 46(34):11230–11238. doi: 10.1039/c7dt02302b.
  • Li L, Wang T, Chen T, Huang W, Zhang Y, Jia R, He C. 2021. Revealing two important tryptophan residues with completely different roles in a dye-decolorizing peroxidase from Irpex lacteus F17. Biotechnol Biofuels. 14(1):128. doi: 10.1186/s13068-021-01978-y.
  • Linde D, Ruiz-Dueñas FJ, Fernández-Fueyo E, Guallar V, Hammel KE, Pogni R, Martínez AT. 2015. Basidiomycete DyPs: genomic diversity, structural–functional aspects, reaction mechanism and environmental significance. Arch Biochem Biophys. 574:66–74. doi: 10.1016/j.abb.2015.01.018.
  • Miyazaki C, Takahashi H. 2001. Engineering of the H2O2-binding pocket region of a recombinant manganese peroxidase to be resistant to H2O2. FEBS Lett. 509(1):111–114. doi: 10.1016/s0014-5793(01)03127-1.
  • Musengi A, Durrell K, Prins A, Khan N, Agunbiade M, Kudanga T, Kirby-McCullough B, Pletschke BI, Burton SG, Le Roes-Hill M. 2020. Production and characterisation of a novel actinobacterial dyp-type peroxidase and its application in coupling of phenolic monomers. Enzyme Microb Technol. 141:109654. doi: 10.1016/j.enzmictec.2020.109654.
  • Ogola HJO, Hashimoto N, Miyabe S, Ashida H, Ishikawa T, Shibata H, Sawa Y. 2010. Enhancement of hydrogen peroxide stability of a novel Anabaena sp dyp-type peroxidase by site-directed mutagenesis of methionine residues. Appl Microbiol Biotechnol. 87(5):1727–1736. doi: 10.1007/s00253-010-2603-6.
  • Ogola HJO, Kamiike T, Hashimoto N, Ashida H, Ishikawa T, Shibata H, Sawa Y. 2009. Molecular characterization of a novel peroxidase from the Cyanobacterium anabaena sp strain pcc 7120. Appl Environ Microbiol. 75(23):7509–7518. doi: 10.1128/AEM.01121-09.
  • Paumann-Page M, Furtmüller PG, Hofbauer S, Paton LN, Obinger C, Kettle AJ. 2013. Inactivation of human myeloperoxidase by hydrogen peroxide. Arch Biochem Biophys. 539(1):51–62. doi: 10.1016/j.abb.2013.09.004.
  • Pi Q, Zhu Z, Tang L. 2022. Transformation of reactive blue 19 by a recombinant peroxidase dyp. Bioprocess Biosyst Eng. 45(2):425–429. doi: 10.1007/s00449-021-02660-1.
  • Saez-Jimenez V, Acebes S, Guallar V, Martinez AT, Ruiz-Duenas FJ. 2015. Improving the oxidative stability of a high redox potential fungal peroxidase by rational design. PLOS One. 10(4):e0124750. doi: 10.1371/journal.pone.0124750.
  • Shrestha R, Chen X, Ramyar KX, Hayati Z, Carlson EA, Bossmann SH, Song L, Geisbrecht BV, Li P. 2016. Identification of surface-exposed protein radicals and a substrate oxidation site in A-class dye-decolorizing peroxidase from Thermomonospora curvata. ACS Catal. 6(12):8036–8047. doi: 10.1021/acscatal.6b01952.
  • Stadtman ER, Moskovitz J, Levine RL. 2003. Oxidation of methionine residues of proteins: biological consequences. Antioxid Redox Signal. 5(5):577–582. doi: 10.1089/152308603770310239.
  • Strittmatter E, Liers C, Ullrich R, Wachter S, Hofrichter M, Plattner DA, Piontek K. 2013. First crystal structure of a fungal high-redox potential dye-decolorizing peroxidase substrate interaction sites and long-range electron transfer. J Biol Chem. 288(6):4095–4102. doi: 10.1074/jbc.M112.400176.
  • Sugano Y, Muramatsu R, Ichiyanagi A, Sato T, Shoda M. 2007. Dyp, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family. J Biol Chem. 282(50):36652–36658. doi: 10.1074/jbc.M706996200.
  • Sugano Y, Matsushima Y, Tsuchiya K, Aoki H, Hirai M, Shoda M. 2009. Degradation pathway of an anthraquinone dye catalyzed by a unique peroxidase dyp from Thanatephorus cucumeris dec 1. Biodegradation. 20(3):433–440. doi: 10.1007/s10532-008-9234-y.
  • Uchida T, Sasaki M, Tanaka Y, Ishimori K. 2015. A dye-decolorizing peroxidase from Vibrio cholerae. Biochemistry. 54(43):6610–6621. doi: 10.1021/acs.biochem.5b00952.
  • Valderrama B, Garcia-Arellano H, Giansanti S, Baratto MC, Pogni R, Vazquez-Duhalt R. 2006. Oxidative stabilization of iso-1-cytochrome c by redox-inspired protein engineering. FASEB J. 20(8):1233–1235. doi: 10.1096/fj.05-4173fje.
  • Valderrama B, Ayala M, Vazquez-Duhalt R. 2002. Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chem Biol. 9(5):555–565. doi: 10.1016/S1074-5521(02)00149-7.
  • Valle-Altamirano RG, Baratto MC, Badillo-Ramírez I, Gasteazoro F, Pogni R, Saniger JM, Valderrama B. 2022. Identification of Fe(iii)–OH species as a catalytic intermediate in plant peroxidases at high H2O2 concentration. New J Chem. 46(10):4579–4586. doi: 10.1039/D1NJ04837F.
  • Xu L, Sun J, Qaria MA, Gao L, Zhu D. 2021. Dye decoloring peroxidase structure, catalytic properties and applications: current advancement and futurity. Catalysts. 11(8):955. doi: 10.3390/catal11080955.
  • Yoshida T, Sugano Y. 2015. A structural and functional perspective of dyp-type peroxidase family. Arch Biochem Biophys. 574:49–55. doi: 10.1016/j.abb.2015.01.022.
  • Yoshida T, Tsuge H, Konno H, Hisabori T, Sugano Y. 2011. The catalytic mechanism of dye-decolorizing peroxidase dyp may require the swinging movement of an aspartic acid residue. FEBS J. 278(13):2387–2394. doi: 10.1111/j.1742-4658.2011.08161.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.