278
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Enhanced biodegradation of crude oil contamination by indigenous bacterial consortium under real conditions

, , , &
Pages 56-67 | Received 25 Jan 2022, Accepted 26 Jun 2023, Published online: 06 Jul 2023

References

  • Adiguzel A, Ay H, Baltaci MO, Akbulut S, Albayrak S, Omeroglu MA. 2020. Genome-based classification of Calidifontibacillus erzurumensis gen. nov., sp. nov., isolated from a hot spring in Turkey, with reclassification of Bacillus azotoformans as Calidifontibacillus azotoformans comb. nov. and Bacillus oryziterrae as Calidifontibacillus oryziterrae comb. Int J Syst Evol Microbiol. 70(12):6418–6427. doi:10.1099/ijsem.0.004549.
  • Akbulut S, Baltaci MO, Adiguzel G, Adiguzel A. 2022. Identification and potential biotechnological characterization of lactic acid bacteria isolated from white cheese samples. J Pure Appl Microbiol. 16:2912–2922.
  • Al-Dhabaan FA. 2019. Morphological, biochemical and molecular identification of petroleum hydrocarbons biodegradation bacteria isolated from oil polluted soil in Dhahran, Saud Arabia. Saudi J Biol Sci. 26(6):1247–1252. doi:10.1016/j.sjbs.2018.05.029.
  • Ansari N, Rokhbakhsh-Zamin F, Hassanshahian M, Hesni MA. 2021. Biodegradation of crude oil using symbiont crude-oil degrading bacteria isolated from corals collected at the Persian Gulf. J Chem Technol Biotechnol. 96(7):1882–1892. doi:10.1002/jctb.6707.
  • Atlas RM. 1981. Microbial-degradation of petroleum-hydrocarbons - an environmental perspective. Microbiol Rev. 45(1):180–209. doi:10.1128/mr.45.1.180-209.1981.
  • Baltaci MO. 2022. Enhancement of cellulase production by co-culture of Streptomyces ambofaciens OZ2 and Cytobacillus oceanisediminis OZ5 isolated from rumen samples. Biocatal Biotransfor. 40(2):144–152. doi:10.1080/10242422.2022.2038581.
  • Baltaci MO, Adiguzel A. 2016. Isolation, identification and molecular characterization of cellulolytic bacteria from rumen samples collected from Erzurum slaughter house. Turkey Res J Biotechnol. 11(2):32–38.
  • Baltaci MO, Ay H, Akbulut S, Adiguzel G, Albayrak S, Omeroglu MA, Ozkan H, Taskin M, Adiguzel A. 2020. Bacillus pasinlerensis sp. nov., a thermophilic bacterium isolated from a hot spring in Turkey. Int J Syst Evol Microbiol. 70(6):3865–3871. doi:10.1099/ijsem.0.004246.
  • Baltaci MO, Genc B, Arslan S, Adiguzel G, Adiguzel A. 2017. Isolation and characterization of thermophilic bacteria from geothermal areas in Turkey and preliminary research on biotechnologically important enzyme production. Geomicrobiol J. 34(1):53–62. doi:10.1080/01490451.2015.1137662.
  • Baltaci MO, Omeroglu MA, Albayrak S, Adiguzel G, Adiguzel A. 2022. Production of endoglucanase by Exiguobacterium mexicanum OB24 using waste melon peels as substrate. An Acad Bras Cienc. 94: e20220151.
  • Bayat Z, Hassanshahian M, Hesni MA. 2015. Enrichment and isolation of crude oil degrading bacteria from some mussels collected from the Persian Gulf. Mar Pollut Bull. 101(1):85–91. doi:10.1016/j.marpolbul.2015.11.021.
  • Brooijmans RJ, Pastink MI, Siezen RJ. 2009. Hydrocarbon-degrading bacteria: the oil-spill clean-up crew. Microb Biotechnol. 2(6):587–594. doi:10.1111/j.1751-7915.2009.00151.x.
  • Chikere CB, Okpokwasili GC, Chikere BO. 2011. Monitoring of microbial hydrocarbon remediation in the soil. 3 Biotech. 1(3):117–138. doi:10.1007/s13205-011-0014-8.
  • Das D, Mawlong GT, Sarki YN, Singh AK, Chikkaputtaiah C, Boruah HPD. 2020. Transcriptome analysis of crude oil degrading Pseudomonas aeruginosa strains for identification of potential genes involved in crude oil degradation. Gene. 755:144909. doi:10.1016/j.gene.2020.144909.
  • Das N, Chandran P. 2011. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int. 2011:941810. doi:10.4061/2011/941810.
  • Deshpande RS, Sundaravadivelu D, Techtmann S, Conmy RN, Santo Domingo JW, Campo P. 2018. Microbial degradation of Cold Lake Blend and Western Canadian select dilbits by freshwater enrichments. J Hazard Mater. 352:111–120. doi:10.1016/j.jhazmat.2018.03.030.
  • Diaz MP, Grigson SJW, Peppiatt CJ, Burgess JG. 2000. Isolation and characterization of novel hydrocarbon-degrading euryhaline consortia from crude oil and mangrove sediments. Mar Biotechnol. 2(6):522–532. doi:10.1007/s101260000037.
  • Dombrowski N, Donaho JA, Gutierrez T, Seitz KW, Teske AP, Baker BJ. 2016. Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill. Nat Microbiol. 1(7):16057. doi:10.1038/nmicrobiol.2016.57.
  • Dorian JP. 2006. Central Asia: a major emerging energy player in the 21st century. Energy Policy. 34(5):544–555. doi:10.1016/j.enpol.2005.11.009.
  • Dvořák P, Nikel PI, Damborský J, de Lorenzo V. 2017. Bioremediation 3.0: engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol Adv. 35(7):845–866. doi:10.1016/j.biotechadv.2017.08.001.
  • Fernandez-Martinez J, Pujalte MJ, Garcia-Martinez J, Mata M, Garay E, Rodriguez-Valera F. 2003. Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 1 21 78T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax. Int J Syst Evol Microbiol. 53(Pt 1):331–338. doi:10.1099/ijs.0.01923-0.
  • Gao H, Lai HX, Zhang JH, Xue QH. 2019. Adding available nitrogen and carbon can improve the efficiency of oil displacement with indigenous bacterial flooding. Sustain Energy Fuels. 3(9):2298–2311. doi:10.1039/C9SE00017H.
  • Gerhardt P. 1994. Diagnostic radiology. Health care costs and need for therapy relevant examination strategies. Rontgenpraxis. 47(5):129–138.
  • Hassanshahian M, Emtiazi G, Cappello S. 2012. Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. Mar Pollut Bull. 64(1):7–12. doi:10.1016/j.marpolbul.2011.11.006.
  • Head IM, Jones DM, Roling WFM. 2006. Marine microorganisms make a meal of oil. Nat Rev Microbiol. 4(3):173–182. doi:10.1038/nrmicro1348.
  • Hong S, Yim UH, Ha SY, Shim WJ, Jeon S, Lee S, Kim C, Choi K, Jung J, Giesy JP, et al. 2016. Bioaccessibility of AhR-active PAHs in sediments contaminated by the Hebei Spirit oil spill: application of Tenax extraction in effect-directed analysis. Chemosphere. 144:706–712. doi:10.1016/j.chemosphere.2015.09.043.
  • Ibrahim IM, Konnova SA, Sigida EN, Lyubun EV, Muratova AY, Fedonenko YP, Elbanna К.,. 2020. Bioremediation potential of a halophilic Halobacillus sp. strain, EG1HP4QL: exopolysaccharide production, crude oil degradation, and heavy metal tolerance. Extremophiles. 24(1):157–166. doi:10.1007/s00792-019-01143-2.
  • Ibrahim M, Makky EA, Azmi NS, Ismail J. 2018. Impact of incubation period on biodegradation of petroleum hydrocarbons from refinery wastewater in Kuantan, Malaysia by indigenous bacteria. Biorem J. 22(1–2):10–19. doi:10.1080/10889868.2018.1476453.
  • Jenab K, Moghimi H, Azin E. 2021. Crude oil and pyrene degradation by halotolerant fungi Embellisia sp. KJ59 and Alternaria sp. KJ66 isolated from saline soils. Int J Environ Anal Chem. 1–12. doi:10.1080/03067319.2021.1939023.
  • Joy S, Rahman PKSM, Sharma S. 2017. Biosurfactant production and concomitant hydrocarbon degradation potentials of bacteria isolated from extreme and hydrocarbon contaminated environments. Chem Eng J. 317:232–241. doi:10.1016/j.cej.2017.02.054.
  • Khandelwal A, Singh SB, Sharma A, Nain L, Varghese E, Singh N. 2023. Effect of surfactant on degradation of Aspergillus sp. and Trichoderma sp. mediated crude oil. Int J Environ an Ch. 103(7):1667–1680. doi:10.1080/03067319.2021.1879800.
  • Khayati G, Barati M. 2017. Bioremediation of petroleum hydrocarbon contaminated soil: optimization strategy using Taguchi design of experimental (DOE) methodology. Environ Process. 4(2):451–461. doi:10.1007/s40710-017-0244-9.
  • Lal B, Khanna S. 1996. Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J Appl Bacteriol. 81(4):355–362. doi:10.1111/j.1365-2672.1996.tb03519.x.
  • Liu X, Li G, Lai Q, Sun F, Du Y, Shao Z. 2015. Emcibacter nanhaiensis gen. nov. sp. nov., isolated from sediment of the South China Sea. Antonie Van Leeuwenhoek. 107(4):893–900. doi:10.1007/s10482-015-0381-y.
  • O’Rourke D, Connolly S. 2003. Just oil? The distribution of environmental and social impacts of oil production and consumption. Annu Rev Environ Resour. 28(1):587–617. doi:10.1146/annurev.energy.28.050302.105617.
  • Ozyurek SB, Bilkay IS. 2018. Biodegradation of petroleum by Klebsiella pneumoniae isolated from drilling fluid. Int J Environ Sci Technol. 15(10):2107–2116.
  • Phulpoto IA, Hu B, Wang Y, Ndayisenga F, Li J, Yu Z. 2021. Effect of natural microbiome and culturable biosurfactants-producing bacterial consortia of freshwater lake on petroleum-hydrocarbon degradation. Sci Total Environ. 751:141720. doi:10.1016/j.scitotenv.2020.141720.
  • Roslee AFA, Zakaria NN, Convey P, Zulkharnain A, Lee GLY, Gomez-Fuentes C, Ahmad SA. 2020. Statistical optimisation of growth conditions and diesel degradation by the Antarctic bacterium, Rhodococcus sp. strain AQ5-07. Extremophiles. 24(2):277–291. doi:10.1007/s00792-019-01153-0.
  • Shi K, Liu Z, Xu H, Xue J, Liu Y, Wu Y, Xiao X, Gao Y, Liu B. 2018. Degradation characteristics and microbial community change of marine petroleum-degrading bacteria in different degradation environments. Pet Sci Technol. 36(17):1361–1367. doi:10.1080/10916466.2018.1465969.
  • Shi K, Xue J, Xiao X, Qiao Y, Wu Y, Gao Y. 2019. Mechanism of degrading petroleum hydrocarbons by compound marine petroleum-degrading bacteria: surface adsorption, cell uptake, and biodegradation. Energy Fuels. 33(11):11373–11379. doi:10.1021/acs.energyfuels.9b02306.
  • Sorkhoh NA, Ibrahim AS, Ghannoum MA, Radwan SS. 1993. High-temperature hydrocarbon degradation by Bacillus-Stearothermophilus from oil-polluted Kuwaiti desert. Appl Microbiol Biotechnol. 39(1):123–126. doi:10.1007/BF00166860.
  • Spini G, Spina F, Poli A, Blieux A-L, Regnier T, Gramellini C, Varese GC, Puglisi E. 2018. Molecular and microbiological insights on the enrichment procedures for the isolation of petroleum degrading bacteria and fungi. Front Microbiol. 9:2543. doi:10.3389/fmicb.2018.02543.
  • Stieglitz JD, Mager EM, Hoenig RH, Alloy M, Esbaugh AJ, Bodinier C, Benetti DD, Roberts AP, Grosell M. 2016. A novel system for embryo-larval toxicity testing of pelagic fish: applications for impact assessment of Deepwater Horizon crude oil. Chemosphere. 162:261–268. doi:10.1016/j.chemosphere.2016.07.069.
  • Tao KY, Liu XY, Chen XP, Hu XX, Cao LY, Yuan XY. 2017. Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis. Bioresour Technol. 224:327–332. doi:10.1016/j.biortech.2016.10.073.
  • Tian XM, Wang XL, Peng ST, Wang Z, Zhou R, Tian H. 2018. Isolation, screening, and crude oil degradation characteristics of hydrocarbons-degrading bacteria for treatment of oily wastewater. Water Sci Technol. 78(12):2626–2638. doi:10.2166/wst.2019.025.
  • Wang J, Wang J, Zhang Z, Li Y, Zhang B, Zhang Z, Zhang G. 2016. Cold-adapted bacteria for bioremediation of crude oil-contaminated soil. J Chem Technol Biotechnol. 91(8):2286–2297. doi:10.1002/jctb.4814.
  • Xu JL, He J, Wang ZC, Wang K, Li WJ, Tang SK, Li SP. 2007. Rhodococcus qingshengii sp. nov., a carbendazim-degrading bacterium. Int J Syst Evol Microbiol. 57(Pt 12):2754–2757. doi:10.1099/ijs.0.65095-0.
  • Xu X, Liu W, Tian S, Wang W, Qi Q, Jiang P, Gao X, Li F, Li H, Yu H. 2018. Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Front Microbiol. 9:9. doi:10.3389/fmicb.2018.02885.
  • Yang Y, Liu Y, Li N, Shi K, Xue J, Gao Y, Xiao X. 2020. Isolation, enhanced growth, and degradation characterization of a strain marine petroleum degrading bacteria. Environ Technol Innov. 18:100796. doi:10.1016/j.eti.2020.100796.
  • Yildirim V, Baltaci MO, Ozgencli I, Sisecioglu M, Adiguzel A, Adiguzel G. 2017. Purification and biochemical characterization of a novel thermostable serine alkaline protease from Aeribacillus pallidus C10: a potential additive for detergents. J Enzyme Inhib Med Chem. 32(1):468–477. doi:10.1080/14756366.2016.1261131.
  • Yilmaz B, Baltaci MO, Sisecioglu M, Adiguzel A. 2016. Thermotolerant alkaline protease enzyme from Bacillus licheniformis A10: purification, characterization, effects of surfactants and organic solvents. J Enzyme Inhib Med Chem. 31(6):1241–1247. doi:10.3109/14756366.2015.1118687.
  • Zekri AY, Chaalal O. 2005. Effect of temperature on biodegradation of crude oil. Energy Sources. 27(1–2):233–244. doi:10.1080/00908310490448299.
  • Zhang XY, Kong DW, Liu XY, Xie HH, Lou XY, Zeng C. 2021. Combined microbial degradation of crude oil under alkaline conditions by Acinetobacter baumannii and Talaromyces sp. Chemosphere. 273:129666.129666doi:10.1016/j.chemosphere.2021.
  • Zhang Z, Gai L, Hou Z, Yang C, Ma C, Wang Z, Sun B, He X, Tang H, Xu P. 2010. Characterization and biotechnological potential of petroleum-degrading bacteria isolated from oil-contaminated soils. Bioresour Technol. 101(21):8452–8456. doi:10.1016/j.biortech.2010.05.060.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.