95
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A design of experiment approach for optimized production of encapsulated trypsin using nano spray drying: Comparative physicochemical and kinetic characterization

ORCID Icon, , , , , & show all
Pages 524-541 | Received 29 May 2023, Accepted 19 Oct 2023, Published online: 01 Nov 2023

References

  • Abdel-Aty AM, Barakat AZ, Abdel-Mageed HM, Mohamed SA. 2023. Development of bovine elastin/tannic acid bioactive conjugate: physicochemical, morphological, and wound healing properties. Polym Bull. doi: 10.1007/s00289-023-04801-w.
  • Abdel-Mageed HM, Abd El Aziz AE, Abdel Raouf BM, Mohamed SA, Nada D. 2022. Antioxidant-biocompatible and stable catalase-based gelatin–alginate hydrogel scaffold with thermal wound healing capability: immobilization and delivery approach. 3 Biotech. 12(3):73. doi: 10.1007/s13205-022-03131-4.
  • Abdel-Mageed HM, Nada D, Radwan RA, Mohamed SA, Gohary NAEL. 2022. Optimization of catalytic properties of Mucor racemosus lipase through immobilization in a biocompatible alginate gelatin hydrogel matrix for free fatty acid production: a sustainable robust biocatalyst for ultrasound-assisted olive oil hydrolysis. 3 Biotech. 12(11):285. doi: 10.1007/s13205-022-03319-8.
  • Abdel-Mageed HM, Barakat AZ, Bassuiny RI, Elsayed AM, Salah HA, Abdel-Aty AM, Mohamed SA. 2022. Biotechnology approach using watermelon rind for optimization of α-amylase enzyme production from Trichoderma virens using response surface methodology under solid-state fermentation. Folia Microbiol. 67(2):253–264. doi: 10.1007/s12223-021-00929-2.
  • Abdel-Mageed HM, Fouad SA, Teaima MH, Radwan RA, Mohamed SA, AbuelEzz NZ. 2021. Engineering lipase enzyme nano-powder using nano spray dryer BÜCHI B-90: experimental and factorial design approach for a stable biocatalyst production. J Pharm Innov. 16(4):759–771., doi: 10.1007/s12247-020-09515-4.
  • Abdel-Mageed HM, AbuelEzz NZ, Radwan RA, Mohamed SA. 2021. Nanoparticles in nanomedicine: a comprehensive updated review on current status, challenges and emerging opportunities. J Microencapsul. 38(6):414–436., doi: 10.1080/02652048.2021.1942275.
  • Abdel-Mageed HM, Ezz N, Radwan R. 2019. Bio-inspired trypsin-chitosan cross-linked enzyme aggregates: a versatile approach for stabilization through carrier-free immobilization. bta. 100(3):301–309., doi: 10.5114/bta.2019.87589.
  • Abdel-Mageed HM, Fouad SA, Teaima MH, Abdel-Aty AM, Fahmy AS, Shaker DS, Mohamed SA. 2019. Optimization of nano spray drying parameters for production of α-amylase nanopowder for biotherapeutic applications using factorial design. Dry Technol. 37(16):2152–2160. doi: 10.1080/07373937.2019.1565576.
  • Abdel-Mageed HM, Radwan RA, AbuelEzz NZ, Nasser HA, El Shamy AA, Abdelnaby RM, El Gohary NA. 2019. Bioconjugation as a smart immobilization approach for α-amylase enzyme using stimuli-responsive Eudragit-L100 polymer: a robust biocatalyst for applications in pharmaceutical industry. Artif Cells Nanomed Biotechnol. 47(1):2361–2368. doi: 10.1080/21691401.2019.1626414.
  • Aita BC, Schmaltz S, Fochi A, Bolson VF, Brun T, de Arruda Cavallin L, Camatti G, Nava DE, Guedes JVC, Kuhn RC, et al. 2022. Spray-dried powder containing chitinase and β-1,3-glucanase with insecticidal activity against Ceratitis capitata (Diptera: Tephritidae). Processes. 10(3):587. doi: 10.3390/pr10030587.
  • Aggarwal S, Ikram S. 2022. Zinc oxide nanoparticles-impregnated chitosan surfaces for covalent immobilization of trypsin: stability & kinetic studies. Int J Biol Macromol. 207:205–221. doi: 10.1016/j.ijbiomac.2022.03.014.
  • AOAC. 984.25-1984. Moisture (loss of mass on drying) in frozen form. AOAC Official Method. [accessed 2022 Sep 17]. http://www.aoacofficialmethod.org/index.php.
  • Arpagaus C, Collenberg A, Rütti D, Assadpour E, Jafari SM. 2018. Nano spray drying for encapsulation of pharmaceuticals. Int J Pharm. 546(1-2):194–214. doi: 10.1016/j.ijpharm.2018.05.037.
  • Bielski E, Zhong Q, Mirza H, Brown M, Molla A, Carvajal T, da Rocha SRP. 2017. TPP-dendrimer nanocarriers for siRNA delivery to the pulmonary epithelium and their dry powder and metered-dose inhaler formulations. Int J Pharm. 527(1–2):171–183., doi: 10.1016/j.ijpharm.2017.05.046.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1–2):248–254. doi: 10.1006/abio.1976.9999.
  • Broadhead J, Rouan SK, Hau I, Rhodes CT. 1994. The effect of process and formulation variables on the properties of spray-dried β-galactosidase. J Pharm Pharmacol. 46(6):458–467., doi: 10.1111/j.2042-7158.1994.tb03828.x.
  • Carballares D, Morellon-Sterling R, Fernandez-Lafuente R. 2022. Design of artificial enzymes bearing several active centers: new trends, opportunities and problems. Int J Mol Sci. 23(10):5304. doi: 10.3390/ijms23105304.
  • Costa-Silva TA, Nogueira MA, Fernandes Souza CR, Oliveira WP, Said S. 2011. Lipase production by endophytic fungus Cercospora kikuchii: stability of enzymatic activity after spray drying in the presence of carbohydrates. Dry. Technol. 29(9):1112–1119., doi: 10.1080/07373937.2011.573153.
  • D’Addio SM, Chan JGY, Kwok PCL, Benson BR, Prud’homme RK, Chan H-K. 2013. Aerosol delivery of nanoparticles in uniform mannitol carriers formulated by ultrasonic spray freeze drying. Pharm Res. 30(11):2891–2901., doi: 10.1007/s11095-013-1120-6.
  • de Oliveira JM, Fernandes P, Benevides RG, de Assis SA. 2020. Characterization and immobilization of protease secreted by the fungus Moorella speciosa. 3 Biotech. 10(10):419. doi: 10.1007/s13205-020-02412-0.
  • Derringer G, Suich R. 1980. Simultaneous optimization of several response variables. J. Qual. Technol. 12(4):214–219. doi: 10.1080/00224065.1980.11980968.
  • Dormenval C, Lokras A, Cano-Garcia G, Wadhwa A, Thanki K, Rose F, Thakur A, Franzyk H, Foged C. 2019. Identification of factors of importance for spray drying of small interfering RNA-loaded lipidoid-polymer hybrid nanoparticles for inhalation. Pharm Res. 36(10):142., doi: 10.1007/s11095-019-2663-y.
  • Emami F, Vatanara A, Park EJ, Na DH. 2018. Drying technologies for the stability and bioavailability of biopharmaceuticals. Pharmaceutics. 10(3):131. doi: 10.3390/pharmaceutics10030131.
  • Erlanger BF, Kokowsky N, Cohen W. 1961. The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys. 95(2):271–278. doi: 10.1016/0003-9861(61)90145-X.
  • Focaroli S, Mah PT, Hastedt JE, Gitlin I, Oscarson S, Fahy JV, Healy AM. 2019. A Design of Experiment (DoE) approach to optimise spray drying process conditions for the production of trehalose/leucine formulations with application in pulmonary delivery. Int J Pharm. 562:228–240. doi: 10.1016/j.ijpharm.2019.03.004.
  • Grangeia HB, Silva C, Simões SP, Reis MS. 2020. Quality by design in pharmaceutical manufacturing: a systematic review of current status, challenges and future perspectives. Eur J Pharm Biopharm. 147:19–37. doi: 10.1016/j.ejpb.2019.12.007.
  • Giovannelli L, et al. 2021. Effect of methyl–β–cyclodextrin and trehalose on the freeze–drying and spray–drying of sericin for cosmetic purposes. Pharmaceuticals. 14:262. doi: 10.3390/ph14030262.
  • Hamedi S, Afsahi MM, Riahi-Madvar A, Mohebbi A. 2021. Modeling and optimization of radish root extract drying as peroxidase source using spouted bed dryer. Sci Rep. 11(1):14362. doi: 10.1038/s41598-021-93563-4.
  • Heissel S, Frederiksen SJ, Bunkenborg J, Højrup P. 2019. Enhanced trypsin on a budget: stabilization, purification and high-temperature application of inexpensive commercial trypsin for proteomics applications. PLoS One. 14(6):e0218374. doi: 10.1371/journal.pone.0218374.
  • Heng D, Lee SH, Ng WK, Tan RBH. 2011. The nano spray dryer B-90. Expert Opin Drug Deliv. 8(7):965–972., doi: 10.1517/17425247.2011.588206.
  • Iwai J, Ogawa N, Nagase H, Endo T, Loftsson T, Ueda H. 2007. Effects of various cyclodextrins on the stability of freeze-dried lactate dehydrogenase. J Pharm Sci. 96(11):3140–3143. doi: 10.1002/jps.20847.
  • Kaerger JS, Price R. 2004. Processing of spherical crystalline particles via a novel solution atomization and crystallization by sonication (SAXS) technique. Pharm Res. 21(2):372–381. doi: 10.1023/b:pham.0000016252.97296.f1.
  • Kanojia G, Willems G-J, Frijlink HW, Kersten GFA, Soema PC, Amorij J-P. 2016. A design of experiment approach to predict product and process parameters for a spray dried influenza vaccine. Int J Pharm. 511(2):1098–1111., doi: 10.1016/j.ijpharm.2016.08.022.
  • Kim JS, Lee S. 2019. Immobilization of trypsin from porcine pancreas onto chitosan nonwoven by covalent bonding. Polymers. 11(9):1462. doi: 10.3390/polym11091462.
  • LeClair DA, Cranston ED, Xing Z, Thompson MR. 2016. Optimization of spray drying conditions for yield, particle size and biological activity of thermally stable viral vectors. Pharm Res. 33(11):2763–2776. doi: 10.1007/s11095-016-2003-4.
  • Lee SH, Heng D, Ng WK, Chan H-K, Tan RBH. 2011. Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Int J Pharm. 403(1–2):192–200. doi: 10.1016/j.ijpharm.2010.10.012.
  • Lee KC, Eun JB, Hwang SJ. 2016. Physicochemical properties and sensory evaluation of mandarin (Citrus unshiu) beverage powder spray-dried at different inlet air temperatures with different amounts of a mixture of maltodextrin and corn syrup. Food Sci Biotechnol. 25(5):1345–1351. doi: 10.1007/s10068-016-0211-7.
  • Lineweaver H, Burk D. 1934. The determination of enzyme dissociation constants. J Am Chem Soc. 56(3):658–666. doi: 10.1021/ja01318a036.
  • Liu C, Saeki D, Matsuyama H. 2017. A novel strategy to immobilize enzymes on microporous membranes via dicarboxylic acid halides. RSC Adv. 7(76):48199–48207. doi: 10.1039/C7RA10012D.
  • López-Díez EC, Bone S. 2004. The interaction of trypsin with trehalose: an investigation of protein preservation mechanisms. Biochim Biophys Acta. 1673(3):139–148. doi: 10.1016/j.bbagen.2004.04.010.
  • Maghraby YR, El-Shabasy RM, Ibrahim AH, Azzazy HME. 2023. Enzyme immobilization technologies and industrial applications. ACS Omega. 8(6):5184–5196. doi: 10.1021/acsomega.2c07560.
  • Matinfar A, Dezfulian M, Haghighipour N, Kurdtabar M, Pourbabaei AA. 2022. Replacement of trypsin by proteases for medical applications. Iran J Pharm Res. 21(1):e126328. PMID: 36942066; PMCID: PMC10024315. doi: 10.5812/ijpr-126328.
  • Mensink MA, Frijlink HW, van der Voort Maarschalk K, Hinrichs WLJ., 2017. How sugars protect proteins in the solid state and during drying (review): mechanisms of stabilization in relation to stress conditions. Eur J Pharm Biopharm. 114:288–295. doi: 10.1016/j.ejpb.2017.01.024.
  • Millqvist-Fureby A, Malmsten M, Bergenståhl B. 1999. Spray-drying of trypsin - surface characterisation and activity preservation. Int J Pharm. 188(2):243–253. doi: 10.1016/s0378-5173(99)00226-4.
  • Miguez P, Sousa E, Tavano O-L. 2023. Increased trypsin resilience in aqueous-acetonitrile environment when immobilized on glyoxyl-agarose may improve its applicability. Biocatal Biotransform. :1–8. doi: 10.1080/10242422.2023.2202804.
  • Momeni L, Mahmodian S, Shareghi B, Saboury AA, Farhadian S., 2017. The functional and structural stabilization of trypsin by sucrose. Int J Biol Macromol. 99:343–349. doi: 10.1016/j.ijbiomac.2017.02.090.
  • Munir M, Kett VL, Dunne NJ, McCarthy HO. 2022. Development of a spray-dried formulation of peptide-DNA nanoparticles into a dry powder for pulmonary delivery using factorial design. Pharm Res. 39(6):1215–1232. doi: 10.1007/s11095-022-03256-4.
  • Nunes C, Suryanarayanan R, Botez CE, Stephens PW. 2004. Characterization and crystal structure of D-mannitol hemihydrate. J Pharm Sci. 93(11):2800–2809. doi: 10.1002/jps.20185.
  • Sadana A, Henley JP. 1987. Single-step unimolecular non-first-order enzyme deactivation kinetics. Biotechnol Bioeng. 30(6):717–723. doi: 10.1002/bit.260300604.
  • Sahin S, Ozmen I. 2020. Covalent immobilization of trypsin on polyvinyl alcohol-coated magnetic nanoparticles activated with glutaraldehyde. J Pharm Biomed Anal. 184:113195. doi: 10.1016/j.jpba.2020.113195.
  • Schmid K, Arpagaus C, Friess W. 2011. Evaluation of the nano spray dryer B-90 for pharmaceutical applications. Pharm Dev Technol. 16(4):287–294. doi: 10.3109/10837450.2010.485320.
  • Schutyser MAI, Perdana J, Boom RM. 2012. Single droplet drying for optimal spray drying of enzymes and probiotics. Trends Food Sci Technol. 27(2):73–82. doi: 10.1016/j.tifs.2012.05.006.
  • Sellami-Kamoun A, Haddar A, Ali NE-H, Ghorbel-Frikha B, Kanoun S, Nasri M. 2008. Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol Res. 163(3):299–306., doi: 10.1016/j.micres.2006.06.001.
  • Shiga H, Joreau H, Neoh TL, Furuta T, Yoshii H. 2014. Encapsulation of alcohol dehydrogenase in mannitol by spray drying. Pharmaceutics. 6(1):185–194., doi: 10.3390/pharmaceutics6010185.
  • Ubbink J. 2016. Structural and thermodynamic aspects of plasticization and antiplasticization in glassy encapsulation and biostabilization matrices. Adv Drug Deliv Rev. 100:10–26. doi: 10.1016/j.addr.2015.12.019.
  • Zhang S, Lei H, Gao X, Xiong X, Wu WD, Wu Z, Chen XD., 2018. Fabrication of uniform enzyme-immobilized carbohydrate microparticles with high enzymatic activity and stability via spray drying and spray freeze drying. Powder Technol. 330:40–49. doi: 10.1016/j.powtec.2018.02.020.
  • Zhang T, Youan BB. 2010. Analysis of process parameters affecting spray-dried oily core nanocapsules using factorial design. AAPS PharmSciTech. 11(3):1422–1431. doi: 10.1208/s12249-010-9516-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.