37
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biocatalyst coupling with Mo-doped SnO2 nanoparticles for efficient photocatalytic dye degradation: An eco-friendly approach for environmental remediation

, , , , &
Received 22 Aug 2023, Accepted 25 Nov 2023, Published online: 03 Dec 2023

References

  • Abdal Dayem A, Hossain MK, Lee SB, Kim K, Saha SK, Yang G-M, Choi HY, Cho S-G. 2017. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci. 18(1):120. doi: 10.3390/ijms18010120.
  • Adebayo H, Shittu O, Adedokun MA, Kareem P, Sivaprakash Ismaila T, Bello, S, Arumugam. 2023. Effect of low-doping concentration on silver-doped SnO2 and its photocatalytic applications. BRIAC. 13(2):165. doi: 10.33263/BRIAC132.165.
  • Ahmed A, Siddique MN, Alam U, Ali T. 2018. Improved photocatalytic activity of Sr doped SnO2 nanoparticles: a role of oxygen vacancy, App. Surf. Sci. 463:976–985. doi: 10.1016/j.apsusc.2018.08.182.
  • Akhir MAM, Rezan SA, Mohamed K, Arafat MM, Haseeb ASMA, Lee HL. 2019. Synthesis of SnO2 nanoparticles via hydrothermal method and their gas sensing applications for ethylene detection. Mat. Tod.: proceed. 17:810–819. doi: 10.1016/j.matpr.2019.06.367.
  • Al-Enazi NM, Alwakeel S, Alhomaidi E. 2022. Photocatalytic and biological activities of green synthesized SnO2 nanoparticles using Chlorella vulgaris. J Appl Microbiol. 133(6):3265–3275. doi: 10.1111/jam.15607.
  • Al-Hamdi AM, Rinner U, Sillanpää M. 2017. Tin dioxide as a photocatalyst for water treatment: a review. Proc. Saf. and Envir. Prote. 107:190–205. doi: 10.1016/j.psep.2017.01.022.
  • Ali Baig AB, Rathinam V, Palaninathan J. 2020. Photodegradation activity of yttrium-doped SnO2 nanoparticles against methylene blue dye and antibacterial effects. Appl Water Sci. 10(2):1–13. doi: 10.1007/s13201-020-1143-1.
  • Ali Yaqoob A, Parveen T, Umar K, Mohamad Ibrahim MN. 2020. Role of nanomaterials in the treatment of wastewater: a review. Water. 12(2):495. doi: 10.3390/w12020495.
  • Al-Nuaim MA, Alwasiti AA, Shnain ZY. 2023. The photocatalytic process in the treatment of polluted water. Chem Zvesti. 77(2):677–701. doi: 10.1007/s11696-022-02468-7.
  • Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YAG, Elsamahy T, Jiao H, Fu Y, Sun J. 2022. A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf. 231:113160. doi: 10.1016/j.ecoenv.2021.113160.
  • Ameen F, Dawoud T, AlNadhari S. 2021. Ecofriendly and low-cost synthesis of ZnO nanoparticles from Acremonium potronii for the photocatalytic degradation of azo dyes. Environ Res. 202:111700. doi: 10.1016/j.envres.2021.111700.
  • Asaithambi S, Murugan R, Sakthivel P, Karuppaiah M, Rajendran S, Ravi G. 2019. Influence of Ni doping in SnO2 nanoparticles with enhanced visible light photocatalytic activity for degradation of methylene blue dye. J Nanosci Nanotechnol. 19(8):4438–4446. doi: 10.1166/jnn.2019.16493.
  • Ashrafi G, Nasrollahzadeh M, Jaleh B, Sajjadi M, Ghafuri H. 2022. Biowaste- and nature-derived (nano)materials: biosynthesis, stability and environmental applications. Adv Colloid Interface Sci. 301:102599. doi: 10.1016/j.cis.2022.102599.
  • Azanaw A, Birlie B, Teshome B, Jemberie M. 2022. Textile effluent treatment methods and eco-friendly resolution of textile wastewater. Case Stud Chem Envi Engi. 6:100230. doi: 10.1016/j.cscee.2022.100230.
  • Azeez F, Al-Hetlani E, Arafa M, Abdelmonem Y, Nazeer AA, Amin MO, Madkour M. 2018. The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci Rep. 8(1):7104. doi: 10.1038/s41598-018-25673-5.
  • Baig N, Kammakakam I, Falath W. 2021. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2(6):1821–1871. doi: 10.1039/D0MA00807A.
  • Batra V, Kaur I, Pathania D, Chaudhary V, Sonu, (2022) Efficient dye degradation strategies using green synthesized ZnO-based nanoplatforms: a review, App. Surf. Sci. Adv. 11:100314. doi: 10.1016/j.apsadv.2022.100314.
  • Bhavya K, Sumalatha N, Archana T, Vijaya Lakshmi K. 2021. A review vermiwash: a plant growth booster and a disease suppressor. Pharma Inno. J. 10(11):2959–2962. www.thepharmajournal.com.
  • Buzuayehu Abebe A, Murthy HC, Amare E. 2020. Enhancing the photocatalytic efficiency of ZnO: defects, heterojunction, and optimization. Enviro. Nanotech Moni Mana. 14:100336. doi: 10.1016/j.enmm.2020.100336.
  • Castillo-Suárez LA, Sierra-Sánchez AG, Linares-Hernández I, Martínez-Miranda V, Teutli-Sequeira EA. 2023. A critical review of textile industry wastewater: green technologies for the removal of indigo dyes. Int J Environ Sci Technol. 20(9):10553–10590. doi: 10.1007/s13762-023-04810-2.
  • Chakhtouna H, Benzeid H, Zari N, Qaiss AEK, Bouhfid R. 2021. Recent progress on Ag/TiO2 photocatalysts: photocatalytic and bactericidal behaviors. Environ Sci Pollut Res Int. 28(33):44638–44666. doi: 10.1007/s11356-021-14996-y.
  • Chen D, Cheng Y, Zhou N, Chen P, Wang Y, Li K, Huo S, Cheng P, Peng P, Zhang R, et al. 2020. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review. J Cleaner Produ. 268:121725. doi: 10.1016/j.jclepro.2020.121725.
  • Choudhary A K, Gupta A, Kumar S, Kumar P, Singh R. P., Singh P, Kumar V, Bhawna, (2020) Synthesis, Antimicrobial activity, and photocatalytic performance of Ce doped SnO2 nanoparticles. Front Nanotechnol.2:595352. doi: 10.3389/fnano.2020.595352.
  • Das A, Patra M, Wary RR, Gupta P, Nair RG., 2018. Photocatalytic performance analysis of Degussa P25 under various laboratory conditions. IOP Conf Ser: mater Sci Eng. 377:012101. doi: 10.1088/1757-899X/377/1/012101.
  • Deepika G, Singh G, Rekhi H, Kaur M, Verma R, Singh K, Ashok M. 2023. Pure and antimony-doped tin oxide nanoparticles for fluorescence sensing and dye degradation applications.J Flurosc. :1–24. doi: 10.21203/rs.3.rs-2378073/v1.
  • Deletic A, Wang H. 2019. Water pollution control for sustainable development. Engineering. 5(5):839–840. doi: 10.1016/j.eng.2019.07.013.
  • Deng Y, Li Z, Tang R, Ouyang K, Liao C, Fang Y, Ding C, Yang L, Su L, Gong D. 2020. What will happen when microorganisms “meet” photocatalysts and photocatalysis? Environ Sci: nano. 7(3):702–723. doi: 10.1039/C9EN01318K.
  • Fagier MA. 2021. Plant-mediated biosynthesis and photocatalysis activities of zinc oxide nanoparticles: a prospect towards dyes mineralization. J. of Nanotech. 2021(6629180):1–15. doi: 10.1155/2021/6629180.
  • Feng S, Hao Ngo H, Guo W, Woong Chang S, Duc Nguyen D, Cheng D, Varjani S, Lei Z, Liu Y. 2021. Roles and applications of enzymes for resistant pollutants removal in wastewater treatment. Bioresour Technol. 335:125278. doi: 10.1016/j.biortech.2021.125278.
  • Garg VK, Yadav YK, Sheoran A, Chand S, Kaushik P. 2006. Live stocks excreta management through vermicomposting using an epigeic earthworm Eisenia foetida. Environmentalist. 26(4):269–276. doi: 10.1007/s10669-006-8641-z.
  • Gu Y, Li S, Li M, Wang X, Liu Y, Shi K, Bai X, Yao Q, Wu Z, Yao H. 2023. Recent advances in g-C3N4-based photo-enzyme catalysts for degrading organic pollutants. RSC Adv. 13(2):937–947. doi: 10.1039/D2RA06994F.
  • Gudeta K, Julka JM, Kumar A, Bhagat A, Kumari A. 2021. Vermiwash: an agent of disease and pest control in soil, a review. Heliyon. 7(3):e06434. doi: 10.1016/j.heliyon.2021.e06434.
  • Haleem A, Shafiq A, Chen S-Q, Nazar M. 2023. A comprehensive review on adsorption, photocatalytic and chemical degradation of dyes and nitro-compounds over different kinds of porous and composite materials. Molecules. 28(3):1081. doi: 10.3390/molecules28031081.
  • Hameed Arnawtee W, Jaleh B, Nasrollahzadeh M, Bakhshali‐Dehkordi R, Nasri A, Orooji Y. 2022. Lignin valorization: facile synthesis, characterization and catalytic activity of multiwalled carbon nanotubes/kraft lignin/Pd nanocomposite for environmental remediation. Separ.and Purif. Tech. 290:120793. doi: 10.1016/j.seppur.2022.120793.
  • Hazaraimi MH, Goh PS, Lau WJ, Ismail AF, Wu Z, Subramaniam MN, Lim JW, Kanakaraju D. 2022. The state-of-the-art development of photocatalysts for the degradation of persistent herbicides in wastewater. Sci Total Environ. 843:156975. doi: 10.1016/j.scitotenv.2022.156975.
  • Javed R, Zia M, Naz S, Aisida SO, Ain N u, Ao Q. 2020. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotechnol. 18(1):172. doi: 10.1186/s12951-020-00704-4.
  • Kajal R, Kataria BR, Asokan K, Mohan D. 2023. Effects of gamma radiation on structural, optical, and electrical properties of SnO2 thin films. App. Surf. Sci. Adv. 15:100406. doi: 10.1016/j.apsadv.2023.100406.
  • Kalanur S, Seo H. 2017. Influence of molybdenum doping on the structural, optical and electronic properties of WO3 for improved solar water splitting. J. of Col. and Inter. Sci. 509:440–447. doi: 10.1016/j.jcis.2017.09.025.
  • Kant R, Kumar N, Dutta V. 2016. Fabrication of micro/nanostructured α-Fe2O3 hollow spheres: effect of electric field on morphological, magnetic and photocatalytic properties. RSC Adv. 6(70):65789–65798. doi: 10.1039/C6RA14412H.
  • Karimi T, Haghighatzadeh A. 2019. Enhanced photocatalytic activity of SnO2 NPs by chromium (Cr) concentration. Bull Mater Sci. 42(4):158. doi: 10.1007/s12034-019-1842-0.
  • Khalid S, Shahid M, Bibi I, Sarwar T, Shah A, Niazi N, Natasha (2018) A review of environmental contamination and health risk assessment of wastewater use for crop irrigation with a focus on low and high-income countries. IJERPH., 15(5):895. doi: 10.3390/ijerph15050895.
  • Khlifi N, Mnif S, Ben Nasr F, Fourati N, Zerrouki C, Chehimi MM, Guermazi H, Aifa S, Guermazi S. 2022. Non-doped and transition metal-doped CuO nano-powders: structure-physical properties and anti-adhesion activity relationship. RSC Adv. 12(36):23527–23543. doi: 10.1039/D2RA02433K.
  • Kim SP, Choi MY, Choi HC. 2016. Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation. Mat. Res. Bull. 74:85–89. doi: 10.1016/j.materresbull.2015.10.024.
  • Kishor R, Purchase D, Saratale GD, Saratale RG, Ferreira LFR, Bilal M, Chandra R, Bharagava RN. 2021. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J Envi Chem Eng. 9(2):105012. doi: 10.1016/j.jece.2020.105012.
  • Krishnakumar T, Jayaprakash R, Parthibavarman M, Phani AR, Singh VN, Mehta BR. 2009. Microwave-assisted synthesis and investigation of SnO2 nanoparticles. Mat. Let. 63(11):896–898. doi: 10.1016/j.matlet.2009.01.032.
  • Kumari H, Sonia, Suman, Ranga R, Chahal S, Devi S, Sharma S, Kumar S, Kumar P, Kumar S, Kumar A, Parmar R. 2023. A review on photocatalysis used for wastewater treatment: dye degradation. Water Air Soil Pollut. 234(6):349. doi: 10.1007/s11270-023-06359-9.
  • Letifi H, Dridi D, Litaiem Y, Ammar S, Dimassi W, Chtourou R. 2021. High efficient and cost effective titanium doped tin dioxide based photocatalysts synthesized via co-precipitation approach. Catalysts. 11(7):803. doi: 10.3390/catal11070803.
  • Li Y, Qimei Y, Zhongming W, Wang G. 2018. Fast fabrication of nano-particle photo-catalyst SnO2: computational understanding and photocatalytic degradation of organic dye. Inorg. Chem. Fron. 5(12) doi: 10.1039/C8QI00688A.
  • Mahdy NK, El-Sayed M, Al-Mofty SE-D, Mohamed A, Karaly AH, El-Naggar ME, Nageh H, Sarhan WA, El-Said Azzazy HM. 2022. Toward Scaling up the production of metal oxide nanoparticles for application on washable antimicrobial cotton fabrics. ACS Omega. 7(43):38942–38956. doi: 10.1021/acsomega.2c04692.
  • Manjula N, Selvan G, Balu A. 2019. Photocatalytic performance of SnO2: mo Nanopowders against the degradation of methyl orange and Rhodamine B dyes under visible light irradiation. J Elec Materi. 48(1):401–408. doi: 10.1007/s11664-018-6720-9.
  • Medhi R, Marquez MD, Randall Lee T. 2020. Visible-light-active doped metal oxide nanoparticles: review of their synthesis, properties, and applications. ACS Appl Nano Mater. 3(7):6156–6185. doi: 10.1021/acsanm.0c01035.
  • Mia MS, Yao P, Zhu X, Lei X, Xing T, Chen G. 2021. Degradation of textile dyes from aqueous solution using tea-polyphenol/Fe loaded waste silk fabrics as fenton-like catalysts. RSC Adv. 11(14):8290–8305. doi: 10.1039/d0ra10727a.
  • Modi S, Yadav VK, Amari A, Alyami AY, Gacem A, Harharah HN, Fulekar MH. 2023. Photocatalytic degradation of methylene blue dye from wastewater by using doped zinc oxide nanoparticles. Water. 15(12):2275. doi: 10.3390/w15122275.
  • Muktaridha O, Adlim M, Suhendrayatna S, Ismail I. 2021. Progress of 3d metal-doped zinc oxide nanoparticles and the photocatalytic properties. Arab. J.of Chem. 14(6):103175. doi: 10.1016/j.arabjc.2021.103175.
  • Narasaiah BP, Banoth P, Sohan A, Mandal BK, Bustamante Dominguez AG, De Los SantosValladares L, Kollu P. 2022. Green biosynthesis of tin oxide nanomaterials mediated by agro-waste cotton boll peel extracts for the remediation of environmental pollutant dyes. ACS Omega. 7(18):15423–15438. doi: 10.1021/acsomega.1c07099.
  • Naz S, Javid I, Konwar S, Surana K, Singh PK, Sahni M, Bhattacharya B. 2020. A simple low cost method for synthesis of SnO2 nanoparticles and its characterization. SN Appl Sci. 2(5):975. doi: 10.1007/s42452-020-2812-2.
  • Nethravathi PC, Suresh D. 2021. Silver-doped ZnO embedded reduced graphene oxide hybrid nanostructured composites for superior photocatalytic hydrogen generation, dye degradation, nitrite sensing and antioxidant activities. Inorg. Chem. Commun. 134:109051. doi: 10.1016/j.inoche.2021.109051.
  • Nethravathi PC, Manjula MV, Devaraja S, Suresh D. 2022. Ag and BiVO4 decorated reduced graphene oxide: a potential nano hybrid material for photocatalytic, sensing and biomedical applications. Inorg Chem Commu. 139:109327. doi: 10.1016/j.inoche.2022.109327.
  • Nethravathi, P.C., Nagaraju, G., Suresh, D., Udayabhanu, (2022) TiO2 and Ag-TiO2 nanomaterials for enhanced photocatalytic and antioxidant activity: green synthesis using Cucumis melo juice, Mater. Tod.: Proc., 49, 841–848. doi: 10.1016/j.matpr.2021.05.670.
  • Nethravathi PC, Manjula MV, Devaraja S, Sakar M, Suresh D. 2023. Eco-friendly preparation of Bi2O3, Ag-Bi2O3 and Ag-Bi2O3-rGO nanomaterials and their photocatalytic H2 evolution, dye degradation, nitrite sensing and biological applications. J Photochem Photobio. A: chem. 435:114295. doi: 10.1016/j.jphotochem.2022.114295.
  • Nezafat Z, Feizi Mohazzab B, Jaleh B, Nasrollahzadeh M, Baran T, Shokouhimehr M. 2021. A promising nanocatalyst: upgraded Kraft lignin by titania and palladium nanoparticles for organic dyes reduction. Inorg Chem Commun. 130:108746. doi: 10.1016/j.inoche.2021.108746.
  • Nouri A, Fakhri A. 2014. Synthesis, characterization and photocatalytic applications of N-, S-, and C-doped SnO2 nanoparticles under ultraviolet (UV) light illumination. Spectrochim Acta A Mol Biomol Spectrosc. 138:563–568. doi: 10.1016/j.saa.2014.11.075.
  • Nuțescu Duduman C, Barrena Pérez MI, Gómez de Salazar JM, Carcea I, Chicet DL, Palamarciuc I. 2016. Synthesis of SnO2 by sol-gel method, Diffu. and Def. SSP. 254:200–206. doi: 10.4028/www.scientific.net/SSP.254.200.
  • Obotey Ezugbe E, Rathilal S. 2020. Membrane technologies in wastewater treatment: a review. Membranes. 10(5):89. doi: 10.3390/membranes10050089.
  • Pascariu P, Gherasim C, Airinei A. 2023. Metal Oxide Nanostructures (MONs) as photocatalysts for ciprofloxacin degradation. Int J Mol Sci. 24(11):9564. doi: 10.3390/ijms24119564.
  • Pathma J, Sakthivel N. 2012. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus. 1(1):26. doi: 10.1186/2193-1801-1-26.
  • Pavel M, Anastasescu C, State R-N, Vasile A, Papa F, Balint I. 2023. Photocatalytic degradation of organic and inorganic pollutants to harmless end products: assessment of practical application potential for water and air cleaning. Catalysts. 13(2):380. doi: 10.3390/catal13020380.
  • Podurets A, Odegova V, Cherkashina K, Bulatov A, Bobrysheva N, Osmolowsky M, Voznesenskiy M, Osmolovskaya O. 2022. The strategy for organic dye and antibiotic photocatalytic removal for water remediation in an example of Co-SnO2 nanoparticles. J Hazard Mater. 436:129035. doi: 10.1016/j.jhazmat.2022.129035.
  • Pratheepa MI, Lawrence M. 2019. Synthesis of pure, Cu and Zn doped CdO nanoparticles by co-precipitation method for supercapacitor applications. Vacuum. 162:208–213. doi: 10.1016/j.vacuum.2019.01.042.
  • Rajasulochana P, Preethy V. 2016. Comparison on efficiency of various techniques in treatment of waste and sewage water – a comprehensive review. Res.-Effi. Tech. 2(4):175–184. doi: 10.1016/j.reffit.2016.09.004.
  • Ravichandran K, Vasanthi DS, Kavitha P, Sahaya Baskaran G. 2021. Vermiwash-derived enzyme-activated ZnO nanomaterial towards two cascading applications: enhanced photocatalysis and effective irrigation. J Mater Sci: mater Electron. 32(7):9584–9595. doi: 10.1007/s10854-021-05621-2.
  • Ravichandran K, Shalini R, Ayyanar M, Kavitha P, Baneto M, Karunakaran M, Praseetha PK, Pushpa KCS, Anuradha N. 2023. Effect of pH of the precursor solution on the photocatalytic and biomedical applications of enzyme coupled ZnO and SnO2 nanomaterials: a comparative study. J. of Wat. Proc. Engi. 53:103817. doi: 10.1016/j.jwpe.2023.103817.
  • Shalini R, Thirumurugan K, Ravichandran K, Kavitha P, Ayyanar M. 2022. Morphological modification and charge carrier separation in tin oxide nanomaterials towards improved photocatalytic dye degradation: enzyme coupling – An effective way. Mat. Lett. 318:132142. doi: 10.1016/j.matlet.2022.132142.
  • Shen L, Qiao Y, Guo Y, Meng S, Yang G, Wu M, Zhao J. 2014. Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles. Cera. Inter. 40(1):1519–1524. doi: 10.1016/j.ceramint.2013.07.037.
  • Singh A, Singh GS. 2017. Vermicomposting: a sustainable tool for environmental equilibria. Environmental Quality Mgmt. 27(1):23–40. doi: 10.1002/AQem.21509.
  • Somu P, Narayanasamy S, Gomez L, Rajendran S, Lee YR, Balakrishnan D. 2022. Immobilization of enzymes for bioremediation: a future remedial and mitigating strategy. Environ Res. 212(Pt D):113411. doi: 10.1016/j.envres.2022.113411.
  • Su SC, Zhang HY, Zhao LZ, He M, Ling CC. 2014. Band alignment of n-SnO2/p-GaN hetero-junction studied by x-ray photoelectron spectroscopy. J Phys D: Appl Phys. 47(21):215102. doi: 10.1088/0022-3727/47/21/215102.
  • Subhiksha V, Kokilavani S, Sudheer Khan S. 2022. Recent advances in degradation of organic pollutant in aqueous solutions using bismuth based photocatalysts: a review. Chemosphere. 290:133228. doi: 10.1016/j.chemosphere.2021.133228.
  • Suresh KC, Surendhiran S, Manoj Kumar P, Ranjth Kumar E, Khadar YAS, Balamurugan A. 2020. Green synthesis of SnO2 nanoparticles using Delonix elata leaf extract: evaluation of its structural, optical, morphological and photocatalytic properties. SN Appl Sci. 2(10):1735. doi: 10.1007/s42452-020-03534-z.
  • Suriyachai N, Chuangchote S, Laosiripojana N, Champreda V, Sagawa T. 2020. Synergistic effects of co-doping on photocatalytic activity of titanium dioxide on glucose conversion to value-added chemicals. ACS Omega. 5(32):20373–20381. doi: 10.1021/acsomega.0c02334.
  • Suvathi S, Rathi R, Ravichandran K, Kavitha P, Ayyanar M, Praseetha PK, Chidhambaram N. 2022. Improved photocatalytic dye degradation and seed germination through enzyme-coupled titanium oxide nanopowder - a cost-effective approach. Environ Res. 218(11):114973. doi: 10.1016/j.envres.2022.114973.
  • Tazikeh S, Akbari A, Talebi A, Talebi E. 2013. Synthesis and characterization of tin oxide nanoparticles via the co-precipitation method. Mater Sci-Pol. 32(1):98–101. doi: 10.2478/s13536-013-0164-y.
  • Vaiano V, De Marco I. 2023. Removal of azo dyes from wastewater through heterogeneous photocatalysis and supercritical water oxidation. Separations. 10(4):230. doi: 10.3390/separations10040230.
  • Velusamy S, Roy A, Mariam E, Krishnamurthy S, Sundaram S, Mallick TK. 2023. Effectual visible light photocatalytic reduction of para-nitro phenol using reduced graphene oxide and ZnO composite. Sci Rep. 13(1):9521. doi: 10.1038/s41598-023-36574-7.
  • Xie S, Cao D, She Y, Wang H. 2018. Atomic layer deposition of TiO2 shells on MoO3 nanobelts allowing enhanced lithium storage performance, Chemi. Commu. 54(56):7782–7785. doi: 10.1039/C8CC04282A.
  • Z, Nezafat Mohammad M, Karimkhani M, Nasrollahzadeh S, Javanshir A, Jamshidi Y, Orooji H, Jang, M, Shokouhimehr. 2022. Facile synthesis of Cu NPs@Fe3O4-lignosulfonate: study of catalytic and antibacterial/antioxidant activities. Food Chem Toxicol. 168:113310. doi: 10.1016/j.fct.2022.113310.
  • Zdarta J, Jankowska K, Bachosz K, Degórska O, Kaźmierczak K, Nguyen LN, Nghiem LD, Jesionowski T. 2021. Enhanced wastewater treatment by immobilized enzymes. Curr Pollution Rep. 7(2):167–179. doi: 10.1007/s40726-021-00183-7.
  • Zhong M, Meng X, Wu F, Li J, Fang Y. 2013. Mo doping-enhanced dye absorption of Bi2Se3 nanoflowers. Nanoscale Res Lett. 8(1):451. doi: 10.1186/1556-276X-8-451.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.