34
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cross-linked enzyme aggregates of xylanase, XynR8(N58D), for effective degradation of untreated lignocellulosic biomass

, , , , , & show all
Received 16 Oct 2023, Accepted 08 Jan 2024, Published online: 29 Jan 2024

References

  • Ajeje SB, Hu Y, Song G, Peter SB, Afful RG, Sun F, Asadollahi MA, Amiri H, Abdulkhani A, Sun H. 2021. Thermostable cellulases/xylanases from thermophilic and hyperthermophilic microorganisms: current perspective. Front Bioeng Biotechnol. 9:794304. doi: 10.3389/fbioe.2021.794304.
  • Alokika, Singh B. 2019. Production, characteristics, and biotechnological applications of microbial xylanases. Appl Microbiol Biotechnol 103: 8763–8784.
  • Benabdessalem C, Othman H, Ouni R, Ghouibi N, Dahman A, Riahi R, Larguach B, Jihene B, Srairi-Abid N, Barbouche MR, Fathallah MD. 2019. N-glycosylation and homodimeric folding significantly enhance the immunoreactivity of Mycobacterium tuberculosis virulence factor CFP32 when produced in the yeast Pichia pastoris. Biochem Biophys Res Commun, 3516: 845–850. doi: 10.1016/j.bbrc.2019.06.140.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1-2):248–254. doi: 10.1006/abio.1976.9999.
  • Buchholz K, Kasche V, Bornscheuer UT. 2012. Chapter 6 Enzyme production and purification in "Biocatalysts and Enzyme Technology”. Wiley-Blackwell, Weinheim, Germany.
  • Chang CI, Tseng HI, Liao YW, Yen CH, Chen TM, Lin CC, Cheng HL. 2011. In vivo and in vitro studies to identify the hypoglycaemic constituents of Momordica charantia wild variant WB24. Food Chem. 125(2):521–528. doi: 10.1016/j.foodchem.2010.09.043.
  • Chen YC, Chiang YC, Hsu FY, Tsai LC, Cheng HL. 2012. Structural modeling and further improvement in pH stability and activity of a highly-active xylanase from an uncultured rumen fungus. Bioresour Technol. 123:125–134. doi: 10.1016/j.biortech.2012.05.142.
  • Cheng HL, Chang SM, Cheng YW, Liu HJ, Chen YC. 2006. Characterization of the activities of p21Cip1/Waf1 promoter-driven reporter systems during camptothecin-induced senescence-like state of BHK-21 cells. Mol Cell Biochem. 291(1-2):29–38. doi: 10.1007/s11010-006-9191-x.
  • Costa IO, Morais JRF, de Medeiros Dantas JM, Gonçalves LRB, Dos Santos ES, Rios NS. 2023. Enzyme immobilization technology as a tool to innovate in the production of biofuels: a special review of the cross-linked enzyme aggregates (CLEAs) strategy. Enzyme Microb Technol. 170:110300. doi: 10.1016/j.enzmictec.2023.110300.
  • Dalal S, Sharma A, Gupta MN. 2007. A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities. Chem Cent J. 1(1):16. doi: 10.1186/1752-153X-1-16.
  • Fan G, Katrolia P, Jia H, Yang S, Yan Q, Jiang Z. 2012. High-level expression of a xylanase gene from the thermophilic fungus Paecilomyces thermophila in Pichia pastoris. Biotechnol Lett. 34(11):2043–2048. doi: 10.1007/s10529-012-0995-3.
  • Guajardo N, Ahumada K, de María PD, Schrebler RA. 2019. Remarkable stability of Candida antarctica lipase B immobilized via cross-linking aggregates (CLEA) in deep eutectic solvents. Biocatal Biotransformation. 37(2):106–114. doi: 10.1080/10242422.2018.1492567.
  • Hero JS, Romero CM, Pisa JH, Perotti NI, Olivaro C, Martinez MA. 2018. Designing cross-linked xylanase aggregates for bioconversion of agroindustrial waste biomass towards potential production of nutraceuticals. Int J Biol Macromol. 111:229–236. doi: 10.1016/j.ijbiomac.2017.12.166.
  • Hilario E, Lataro RC, Alegria MC, Lavarda SC, Ferro JA, Bertolini MC. 2001. High-level production of functional muscle alpha-tropomyosin in Pichia pastoris. Biochem Biophys Res Commun. 284(4):955–960. doi: 10.1006/bbrc.2001.5059.
  • Karbalaei M, Rezaee SA, Farsiani H. 2020. Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins. J Cell Physiol. 235(9):5867–5881. doi: 10.1002/jcp.29583.
  • Khattak WA, Khan T, Ha JH, Ul-Islam M, Kang MK, Park JK. 2013. Enhanced production of bioethanol from waste of beer fermentation broth at high temperature through consecutive batch strategy by simultaneous saccharification and fermentation. Enzyme Microb Technol. 53(5):322–330. doi: 10.1016/j.enzmictec.2013.07.004.
  • Kumar V, Bahuguna A, Ramalingam S, Kim M. 2021. Developing a sustainable bioprocess for the cleaner production of xylooligosaccharides: an approach towards lignocellulosic waste management. J Clean Prod. 316:128332. doi: 10.1016/j.jclepro.2021.128332.
  • Kumar S, Mohan U, Kamble AL, Pawar S, Banerjee UC. 2010. Cross-linked enzyme aggregates of recombinant Pseudomonas putida nitrilase for enantioselective nitrile hydrolysis. Bioresour Technol. 101(17):6856–6858. doi: 10.1016/j.biortech.2010.03.084.
  • Kuthiala T, Thakur K, Sharma D, Singh G, Khatri M, Arya SK. 2022. The eco-friendly approach of cocktail enzyme in agricultural waste treatment: a comprehensive review. Int J Biol Macromol. 209(Pt B):1956–1974. doi: 10.1016/j.ijbiomac.2022.04.173.
  • Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227(5259):680–685. doi: 10.1038/227680a0.
  • Liao H, Li X, Lian Z, Xu Y, Zhang J. 2021. Two-step acetic acid/sodium acetate and xylanase hydrolysis for xylooligosaccharides production from corncob. Bioresour Technol. 342:125979. doi: 10.1016/j.biortech.2021.125979.
  • Liao H, Ying W, Li X, Zhu J, Xu Y, Zhang J. 2022. Optimized production of xylooligosaccharides from poplar: a biorefinery strategy with sequential acetic acid/sodium acetate hydrolysis followed by xylanase hydrolysis. Bioresour Technol. 347:126683. doi: 10.1016/j.biortech.2022.126683.
  • Majumder AB, Mondal K, Singh TP, Gupta MN. 2008. Designing cross-linked lipase aggregates for optimum performance as biocatalysts. Biocatal Biotransformation. 26(3):235–242. doi: 10.1080/10242420701685601.
  • Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 31(3):426–428. doi: 10.1021/ac60147a030.
  • Mohd Azhar SH, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Mohd Faik AA, Rodrigues KF. 2017. Yeasts in sustainable bioethanol production: a review. Biochem Biophys Rep. 10:52–61. doi: 10.1016/j.bbrep.2017.03.003.
  • Nakamura H, Oda-Ueda N, Ueda T, Ohkuri T. 2018. A novel engineered interchain disulfide bond in the constant region enhances the thermostability of adalimumab Fab. Biochem Biophys Res Commun. 495(1):7–11. doi: 10.1016/j.bbrc.2017.10.140.
  • Özacar M, Mehde AA, Mehdi WA, Özacar ZZ, Severgün O. 2019. The novel multi cross-linked enzyme aggregates of protease, lipase, and catalase production from the sunflower seeds, characterization and application. Colloids Surf B Biointerfaces. 173:58–68. doi: 10.1016/j.colsurfb.2018.09.042.
  • Perwez M, Ahmed Mazumder J, Sardar M. 2019. Preparation and characterization of reusable magnetic combi-CLEA of cellulase and hemicellulase. Enzyme Microb Technol. 131:109389. doi: 10.1016/j.enzmictec.2019.109389.
  • Roy S, Dutta T, Sarkar TS, Ghosh S. 2013. Novel xylanases from Simplicillium obclavatum MTCC 9604: comparative analysis of production, purification and characterization of enzyme from submerged and solid state fermentation. Springerplus. 2(1):382. doi: 10.1186/2193-1801-2-382.
  • Sampaio CS, Angelotti JAF, Fernandez-Lafuente R, Hirata DB. 2022. Lipase immobilization via cross-linked enzyme aggregates: problems and prospects - A review. Int J Biol Macromol. 215:434–449. doi: 10.1016/j.ijbiomac.2022.06.139.
  • Sanghi A, Garg N, Sharma J, Kuhar K, Kuhad RC, Gupta VK. 2008. Optimization of xylanase production using inexpensive agro-residues by alkalophilic Bacillus subtilis ASH in solid-state fermentation. World J Microbiol Biotechnol. 24(5):633–640. doi: 10.1007/s11274-007-9521-5.
  • Santibáñez L, Henríquez C, Corro-Tejeda R, Bernal S, Armijo B, Salazar O. 2021. Xylooligosaccharides from lignocellulosic biomass: a comprehensive review. Carbohydr Polym. 251:117118. doi: 10.1016/j.carbpol.2020.117118.
  • Shoichet BK, Baase WA, Kuroki R, Matthews BW. 1995. A relationship between protein stability and protein function. Proc Natl Acad Sci U S A. 92(2):452–456. doi: 10.1073/pnas.92.2.452.
  • Velasco-Lozano S, López-Gallego F, Mateos-Díaz JC, Favela-Torres E. 2016. Cross-linked enzyme aggregates (CLEA) in enzyme improvement – a review. Biocatalysis. 1(1):166–177. doi: 10.1515/boca-2015-0012.
  • Wang X, Huang H, Xie X, Ma R, Bai Y, Zheng F, You S, Zhang B, Xie H, Yao B, et al. 2016. Improvement of the catalytic performance of a hyperthermostable GH10 xylanase from Talaromyces leycettanus JCM12802. Bioresour Technol. 222:277–284. doi: 10.1016/j.biortech.2016.10.003.
  • Yu J, Liu X, Guan L, Jiang Z, Yan Q, Yang S. 2021. High-level expression and enzymatic properties of a novel thermostable xylanase with high arabinoxylan degradation ability from Chaetomium sp. suitable for beer mashing. Int J Biol Macromol. 168:223–232. doi: 10.1016/j.ijbiomac.2020.12.040.
  • Zerva A, Pentari C, Ferousi C, Nikolaivits E, Karnaouri A, Topakas E. 2021. Recent advances on key enzymatic activities for the utilisation of lignocellulosic biomass. Bioresour Technol. 342:126058. doi: 10.1016/j.biortech.2021.126058.
  • Zhao S, Zhang GL, Chen C, Yang Q, Luo XM, Wang ZB, Wu AM, Feng JX. 2021. A combination of mild chemical pre-treatment and enzymatic hydrolysis efficiently produces xylooligosaccharides from sugarcane bagasse. J Clean Prod. 291:125972.
  • Zheng HC, Sun MZ, Meng LC, Pei HS, Zhang XQ, Yan Z, Zeng WH, Zhang JS, Hu JR, Lu FP, et al. 2014. Purification and characterization of a thermostable xylanase from Paenibacillus sp. NF1 and its application in xylooligosaccharides production. J Microbiol Biotechnol. 24(4):489–496. doi: 10.4014/jmb.1312.12072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.