153
Views
0
CrossRef citations to date
0
Altmetric
Review Article

An overview on preparation of enzymes for industrial use

& ORCID Icon
Received 27 Apr 2022, Accepted 19 Jan 2024, Published online: 01 Feb 2024

References

  • Aberer W, Hahn M, Klade M, Seebacher U, Spök A, Wallner K, Witzani H. 2002. Final report: collection of information on enzymes. Brussels, Belgium: European Commission. European Commission Contract No (Vol. 2). B4-3040/2000/27845/MAR.
  • Akdis CA. 2021. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 21(11):739–751. doi: 10.1038/s41577-021-00538-7.
  • Amin N, Liu AD, Ramer S, Aehle W, Meijer D, Metin M, Wong S, Gualfetti P, Schellenberger V. 2004. Construction of stabilized proteins by combinatorial consensus mutagenesis. Protein Eng Des Sel. 17(11):787–793. doi: 10.1093/protein/gzh091.
  • Angkawinitwong U, Sharma G, Khaw PT, Brocchini S, Williams GR. 2015. Solid-state protein formulations. Ther Deliv. 6(1):59–82. doi: 10.4155/tde.14.98.
  • Arbige MV, Pitcher WH. 1989. Industrial enzymology: a look towards the future. Trends Biotechnol. 7(12):330–335. doi: 10.1016/0167-7799(89)90032-2.
  • Back JF, Oakenfull D, Smith MB. 1979. Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry. 18(23):5191–5196. doi: 10.1021/bi00590a025.
  • Bairoch A. 2000. The ENZYME database in 2000. Nucleic Acids Res. 28(1):304–305. doi: 10.1093/nar/28.1.304.
  • Balcão VM, Vila MM. 2015. Structural and functional stabilization of protein entities: state-of-the-art. Adv Drug Deliv Rev. 93:25–41. doi: 10.1016/j.addr.2014.10.005.
  • Becker T, Park G, Gaertner AL. 1997. Formulation of detergent enzymes. Enzymes in detergency Boca Raton (FL): CRC Press; p. 299–326.
  • Bhatt HB, Singh SP. 2020. Cloning, expression, and structural elucidation of a biotechnologically potential alkaline serine protease from a newly isolated haloalkaliphilic Bacillus lehensis JO-26. Front Microbiol. 11:941. doi: 10.3389/fmicb.2020.00941.
  • Bosquillon C, Rouxhet PG, Ahimou F, Simon D, Culot C, Préat V, Vanbever R. 2004. Aerosolization properties, surface composition and physical state of spray-dried protein powders. J Control Release. 99(3):357–367. doi: 10.1016/j.jconrel.2004.07.022.
  • Brahmachari G. 2016. Biotechnology of microbial enzymes: production, biocatalysis and Industrial applications. Amsterdam, Netherlands: Academic Press, Elsevier; p. 280.
  • Brzozowski AM, Lawson DM, Turkenburg JP, Bisgaard-Frantzen H, Svendsen A, Borchert TV, Dauter Z, Wilson KS, Davies GJ. 2000. Structural analysis of a chimeric bacterial α-amylase: high-resolution analysis of native and ligand complexes. Biochemistry. 39(31):9099–9107. doi: 10.1021/bi0000317.
  • Buchholz K, Bornscheuer UT. 2017. Enzyme technology: history and current trends. Applied bioengineering: innovations and future directions. Hoboken (NJ): Wiley; p. 13–46.
  • Chaplin MF, Bucke C. 1990. Enzyme technology. New York (NY): Cambridge University Press Archive; p. 73.
  • Chen K, Arnold FH. 2020. Engineering new catalytic activities in enzymes. Nat Catal. 3(3):203–213. doi: 10.1038/s41929-019-0385-5.
  • Clarke KG. 2013. Downstream processing. Bioprocess engineering: an introductory engineering and life science approach. Amsterdam, Netherlands: Elsevier; p. 209–234.
  • Dale D, Becker T, Reichman M, Maurer S. 2022. Delivery and stabilization of e\\nzymes. Enzymes in farm animal nutrition. Wallingford: CABI; p. 207–219.
  • Delplancke PFA, Braeckman KG. 2017. Liquid detergent composition. Procter and Gamble Co, U.S. Patent Application 15/334,634.
  • DeSantis G, Jones JB. 1999. Chemical modification of enzymes for enhanced functionality. Curr Opin Biotechnol. 10(4):324–330. doi: 10.1016/S0958-1669(99)80059-7.
  • Estell DA, Wells JA. 1988. Modified enzymes and methods for making same. Genencor Inc, U.S. Patent 4,760,025.
  • FAO/WHO. 2019. Safety evaluation of certain food additives. Eighty fourth meeting. Geneva, Switzerland: FAO/WHO.
  • FAO/WHO. 2002. Expert committee on food additives. Fifty ninth meeting. Geneva, Switzerland: FAO/WHO.
  • FAO/WHO. 2007. General specifications and considerations for enzyme preparations used in food processing. Evaluation of certain food additives and contaminants. Sixty-seventh meeting. Geneva, Switzerland: FAO/WHO.
  • Fernandes DA, Costa E, Leandro P, Corvo ML. 2022. Formulation of spray dried enzymes for dry powder inhalers: an integrated methodology. Int J Pharm. 615:121492. doi: 10.1016/j.ijpharm.2022.121492.
  • Figard P. 1951. Glycerol fermentation of starch. Lowa State Collage J Sci. 25:208–210. doi: 10.31274/rtd-180813-14707
  • Galanakis CM. 2021. Functionality of Food Components and Emerging Technologies. Foods. 10(1):128. doi: 10.3390/foods10010128.
  • Guerrero-Navarro AE, Ríos-Castillo AG, Ripolles-Avila C, Zamora A, Hascoët AS, Felipe X, Castillo M, Rodríguez-Jerez JJ. 2022. Effectiveness of enzymatic treatment for reducing dairy fouling at pilot-plant scale under real cleaning conditions. LWT-Food Sci Technol. 154:112634. doi: 10.1016/j.lwt.2021.112634.
  • Herrera-Márquez O, Fernández-Serrano M, Pilamala M, Jácome MB, Luzón G. 2019. Stability studies of an amylase and a protease for cleaning processes in the food industry. Food Bioprod Process. 117:64–73. doi: 10.1016/j.fbp.2019.06.015.
  • IUB. 1961. Report of the commission on enzymes of the international union of biochemistry. IUB aymposium series. Vol. 20. New York (NY): Pergamon Press.
  • Jordan S, Katz JS, Yezer B, Derjaguin LVO. 2021. Excipients: characterization, purpose, and selection. Protein instability at interfaces during drug product development: fundamental understanding, evaluation, and mitigation. Berlin, Germany: Springer; p. 249–269.
  • Jørgensen JT, Jacobsen C, Hansen KU, Jørgensen A, Oftelund D, Bach P, Søndergaard GB. 2005. Spray dried enzyme product. Novozymes AS, U.S. Patent 6,924,133.
  • Ju J, Li Z, Wei W, Simonsen O, Andersen KB, Du W. 2020. Encapsulated solid enzyme product, Novozymes. US patent 20200087597 A1.
  • Juturu V, Wu JC. 2014. Microbial cellulases: engineering, production and applications. Renew Sust Energ Rev. 33:188–203. doi: 10.1016/j.rser.2014.01.077.
  • Kamini NR, Hemachander C, Mala JGS, Puvanakrishnan R. 1999. Microbial enzyme technology as an alternative to conventional chemicals in leather industry. Curr Sci. 77(1):80–86. https://www.jstor.org/stable/24102916
  • Kazlauskas R. 2018. Engineering more stable proteins. Chem Soc Rev. 47(24):9026–9045. doi: 10.1039/c8cs00014j.
  • Khambhaty Y. 2020. Applications of enzymes in leather processing. Environ Chem Lett. 18(3):747–769. doi: 10.1007/s10311-020-00971-5.
  • Kralova I, Sjöblom J. 2009. Surfactants used in food industry: a review. J Dispers Sci Technol. 30(9):363–1383. doi: 10.1080/01932690902735561
  • Kumar A, Singh S. 2013. Directed evolution: tailoring biocatalysts for industrial applications. Crit Rev Biotechnol. 33(4):365–378. doi: 10.3109/07388551.2012.716810.
  • Li J, Krause ME, Tu R. 2021. Overview of the impact of protein interfacial instability on the development of biologic products. Protein instability at interfaces during drug product development. Berlin, Germany: Springer; p. 1–8.
  • Linderstrom-Lang K. 1937. Enzymes. Annu Rev Biochem. 6(1):43–72. doi: 10.1146/annurev.bi.06.070137.000355.
  • Ma J, Hou X, Gao D, Lv B, Zhang J. 2014. Greener approach to efficient leather soaking process: role of enzymes and their synergistic effect. J Clean Prod. 78:226–232. doi: 10.1016/j.jclepro.2014.04.058.
  • Madhu A, Chakraborty JN. 2017. Developments in application of enzymes for textile processing. J Clean Prod. 145:114–133. doi: 10.1016/j.jclepro.2017.01.013.
  • Martinez R, Jakob F, Tu R, Siegert P, Maurer KH, Schwaneberg U. 2013. Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution. Biotechnol Bioeng. 110(3):711–720. doi: 10.1002/bit.24766.
  • Mensink MA, Frijlink HW, Van Der Voort Maarschalk K, Hinrichs WL. 2017. How sugars protect proteins in the solid state and during drying (review): mechanisms of stabilization in relation to stress conditions. Eur J Pharm Biopharm. 114:288–295. doi: 10.1016/j.ejpb.2017.01.024.
  • Mojsov KD. 2016. Aspergillus enzymes for food industries. New and future developments in microbial biotechnology and bioengineering. Amsterdam, Netherlands: Elsevier; p. 215–222.
  • Mojsov K. 2014. Biopolishing enzymes and their applications in textiles: a review. Tekstilna Industrija. 61(2):20–24. https://eprints.ugd.edu.mk/id/eprint/12966
  • Mondal S, Mondal K, Halder SK, Thakur N, Mondal KC. 2022. Microbial Amylase: old but still at the forefront of all major industrial enzymes. Biocatal Agric Biotechnol. 45:102509. doi: 10.1016/j.bcab.2022.102509.
  • Mozhaev VV, Melik-Nubarov NS, Sergeeva MV, Šikšnis V, Martinek K. 1990. Strategy for stabilizing enzymes part one: increasing stability of enzymes via their multi-point interaction with a support. Biocatalysis. 3(3):179–187. doi: 10.3109/10242429008992060.
  • Niyonzima FN, Veena SM, More SS. 2020. Industrial production and optimization of microbial enzymes. Microbial enzymes: roles and applications in industries. Berlin, Germany: Springer; p. 115–135.
  • Northrop JH. 1929. Crystalline pepsin. Science. 69(1796):580–580. doi: 10.1126/science.69.1796.580.
  • Novozymes-new enzyme makes high protein drinks taste better. 2021. https://www.novozymes.com/en/news/news-archive/2021/1/new-enzyme-makes-high-protein-drinks-taste-better.
  • Nunes CS, Philipps-Wiemann P. 2018. Formulation of enzymes. Enzymes in human and animal nutrition. Amsterdam, Netherlands: Academic Press, Elsevier; p. 429–440.
  • OCED. 2018. Working document on the risk assessment of secondary metabolites of microbial biocontrol agents (OECD Environment, Health and Safety Publications, Series on Pesticides, No. 98). Paris: OCED.
  • Ottone C, Romero O, Urrutia P, Bernal C, Illanes A, Wilson L. 2021. Enzyme biocatalysis and sustainability. Nanostructured catalysts for environmental applications. Berlin, Germany: Springer; p. 383–413.
  • Qasim F, Diercks‐Horn S, Gerlach D, Schneider A, Fernandez‐Lahore HM. 2022. Production of a novel milk‐clotting enzyme from solid‐substrate Mucor spp. culture. J Food Sci. 87(10):4348–4362. doi: 10.1111/1750-3841.16307.
  • Rähse W. 2014. Production of tailor‐made enzymes for detergents. Chem Bio Eng Rev. 1(1):27–39. doi: 10.1002/cben.201300001.
  • Ratledge C, Kristiansen B. 2006. Basic biotechnology. New York (NY): Cambridge University Press; p. 219.
  • Rieck HP. 2017. Builders: the backbone of powdered detergents. Powdered detergents. Abingdon: Routledge; p. 43–108.
  • Saha P, Khan MF, Patra S. 2018. Truncated α-amylase: an improved candidate for textile processing. Prep Biochem Biotechnol. 48(7):635–645. doi: 10.1080/10826068.2018.1479863.
  • Sarrouh B, Santos TM, Miyoshi A, Dias R, Azevedo V. 2012. Up-to-date insight on industrial enzymes applications and global market. J Bioprocess Biotech. s1(01):002. doi: 10.4172/2155-9821.S4-002.
  • Sayre TC, Lee TM, King NP, Yeates TO. 2011. Protein stabilization in a highly knotted protein polymer. Protein Eng Des Sel. 24(8):627–630. doi: 10.1093/protein/gzr024.
  • Shakilanishi S, Shanthi C. 2017. Specificity studies on proteases for dehairing in leather processing using decorin as model conjugated protein. Int J Biol Macromol. 103:1069–1076. doi: 10.1016/j.ijbiomac.2017.05.134.
  • Shire SJ, Shahrokh Z, Liu JUN. 2004. Challenges in the development of high protein concentration formulations. J Pharm Sci. 93(6):1390–1402. doi: 10.1002/jps.20079.
  • Singh A, Negi MS, Dubey A, Kumar V, Verma AK. 2018. Methods of enzyme immobilization and its applications in food industry. Enzymes in food technology. Singapore: Springer; p. 103–124.
  • Singh R, Kim SW, Kumari A, Mehta PK. 2022. An overview of microbial α-amylase and recent biotechnological developments. CBIOT. 11(1):11–26. doi: 10.2174/2211550111666220328141044.
  • Sundararajan S, Kannan CN, Chittibabu S. 2011. Alkaline protease from Bacillus cereus VITSN04: potential application as a dehairing agent. J Biosci Bioeng. 111(2):128–133. doi: 10.1016/j.jbiosc.2010.09.009.
  • Suzuki F, Ito N, Yuuki T, Yamagata H, Udaka S. 1989. Improving thermostability of raw-starch digesting amylase from a Cytophaga sp. by site-directed mutagenesis. J Biol Chem. 264(32):18933–18938. doi: 10.1016/S0021-9258(19)47247-5.
  • Verma ML, Kumar S, Das A, Randhawa JS, Chamundeeswari M. 2020. Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications. Environ Chem Lett. 18(2):315–323. doi: 10.1007/s10311-019-00942-5.
  • Weijers SR, Van’t Riet K. 1992. Enzyme stability in downstream processing part 1: enzyme inactivation, stability and stabilization. Biotechnol Adv. 10(2):237–249. doi: 10.1016/0734-9750(92)90004-s.
  • Wintrode PL, Miyazaki K, Arnold FH. 2000. Cold adaptation of a mesophilic subtilisin like protease by laboratory evolution. J Biol Chem. 275(41):31635–31640. doi: 10.1074/jbc.M004503200.
  • Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. 2021. Biocatalysis: enzymatic synthesis for industrial applications. Angew Chem Int Ed Engl. 60(1):88–119. doi: 10.1002/anie.202006648.
  • Yamaguchi S, Yamamoto E, Mannen T, Nagamune T, Nagamune T. 2013. Protein refolding using chemical refolding additives. Biotechnol J. 8(1):17–31. doi: 10.1002/biot.201200025.
  • Zbacnik TJ, Holcomb RE, Katayama DS, Murphy BM, Payne RW, Coccaro RC, Evans GJ, Matsuura JE, Henry CS, Manning MC. 2017. Role of buffers in protein formulations. J Pharm Sci. 106(3):713–733. doi: 10.1016/j.xphs.2016.11.014.
  • Zhang Y, He S, Simpson BK. 2018. Enzymes in food bioprocessing—novel food enzymes, applications, and related techniques. Curr Opin Food Sci. 19:30–35. doi: 10.1016/j.cofs.2017.12.007.
  • Zhao H. 2005. Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids. J Mol Catal B Enzym. 37(1–6):16–25. doi: 10.1016/j.molcatb.2005.08.007.
  • Zhou Z, Wang X. 2021. Rational design and structure-based engineering of alkaline pectate lyase from Paenibacillus sp. 0602 to improve thermostability. BMC Biotechnol. 21(1):32. doi: 10.1186/s12896-021-00693-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.