120
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Enzymatic synthesis of tyrosol esters in organic solvents and ionic liquids: Correlation between enzyme activity and solvent properties

, , , , , & show all
Pages 553-564 | Received 31 Oct 2023, Accepted 28 Jan 2024, Published online: 05 Feb 2024

References

  • Aissa I, Bouaziz M, Ghamgui H, Kamoun A, Miled N, Sayadi S, Gargouri Y. 2007. Optimization of lipase-catalyzed synthesis of acetylated tyrosol by response surface methodology. J Agric Food Chem. 55(25):10298–10305. doi:10.1021/jf071685q.
  • Aissa I, Sghair RM, Bouaziz M, Laouini D, Sayadi S, Gargouri Y. 2012. Synthesis of lipophilic tyrosyl esters derivatives and assessment of their antimicrobial and antileishmania activities. Lipids Health Dis. 11(1):13. doi:10.1186/1476-511X-11-13.
  • Clapés P, Valencia G, Adlercreutz P. 1992. Influence of solvent and water activity on kinetically controlled peptide synthesis. Enzyme Microb Technol. 14(7):575–580. doi:10.1016/0141-0229(92)90129-c.
  • Curie CA, Darmawan MA, Dianursanti D, Budhijanto W, Gozan M. 2022. The effect of solvent hydrophilicity on the enzymatic ring-opening polymerization of L-lactide by Candida rugosa lipase. Polymers (Basel). 14(18):3856. doi:10.3390/polym14183856.
  • de los Ríos AP, Fernández FH, Gómez D, Rubio M, Víllora G. 2011. Biocatalytic transesterification of sunflower and waste cooking oils in ionic liquid media. Process Biochem. 46(7):1475–1480. doi:10.1016/j.procbio.2011.03.021.
  • Du W, Xu Y-Y, Zeng J, Liu D-H. 2004. Novozym 435-catalysed transesterification of crude soya bean oils for biodiesel production in a solvent-free medium. Biotechnol Appl Biochem. 40(Pt 2):187–190. doi:10.1042/BA20030142.
  • Dudkaitė V, Kairys V, Bagdžiūnas G. 2023. Understanding the activity of glucose oxidase after exposure to organic solvents. J Mater Chem B. 11(11):2409–2416. doi:10.1039/d2tb02605h.
  • Dwamena AK, Raynie DE. 2020. Solvatochromic parameters of deep eutectic solvents: effect of different carboxylic acids as hydrogen bond donor. J Chem Eng Data. 65(2):640–646. doi:10.1021/acs.jced.9b00872.
  • Floris B, Galloni P, Conte V, Sabuzi F. 2021. Tailored functionalization of natural phenols to improve biological activity. Biomolecules. 11(9):1325. doi:10.3390/biom11091325.
  • Fotiadou R, Patila M, Hammami MA, Enotiadis A, Moschovas D, Tsirka K, Spyrou K, Giannelis EP, Avgeropoulos A, Paipetis A, et al. 2019. Development of effective lipase-hybrid nanoflowers enriched with carbon and magnetic nanomaterials for biocatalytic transformations. Nanomaterials. 9(6):808. doi:10.3390/nano9060808.
  • Grasso S, Siracusa L, Spatafora C, Renis M, Tringali C. 2007. Hydroxytyrosol lipophilic analogues: enzymatic synthesis, radical scavenging activity and DNA oxidative damage protection. Bioorg Chem. 35(2):137–152. doi:10.1016/j.bioorg.2006.09.003.
  • Halling PJ. 1989. Organic liquids and biocatalysts: theory and practice. Trends Biotechnol. 7(3):50–52. doi:10.1016/0167-7799(89)90062-0.
  • Halling PJ. 1992. Salt hydrates for water activity control with biocatalysts in organic media. Biotechnol Tech. 6(3):271–276. doi:10.1007/BF02439357.
  • Hama S, Yoshida A, Nakashima K, Noda H, Fukuda H, Kondo A. 2010. Surfactant-modified yeast whole-cell biocatalyst displaying lipase on cell surface for enzymatic production of structured lipids in organic media. Appl Microbiol Biotechnol. 87(2):537–543. doi:10.1007/s00253-010-2519-1.
  • Huang Z-L, Yang T-X, Huang J-Z, Yang Z. 2014. Enzymatic production of biodiesel from Millettia pinnata seed oil in ionic liquids. Bioenerg Res. 7(4):1519–1528. doi:10.1007/s12155-014-9489-6.
  • Itoh T, Akasaki E, Kudo K, Shirakami S. 2001. Lipase-catalyzed enantioselective acylation in the ionic liquid solvent System: reaction of enzyme anchored to the solvent. Chem. Lett. 30(3):262–263. doi:10.1246/cl.2001.262.
  • Itoh T. 2017. Ionic liquids as tool to improve enzymatic organic synthesis. Chem Rev. 117(15):10567–10607. doi:10.1021/acs.chemrev.7b00158.
  • Jessop PG, Jessop DA, Fu D, Phan L. 2012. Solvatochromic parameters for solvents of interest in green chemistry. Green Chem. 14(5):1245–1259. doi:10.1039/c2gc16670d.
  • Kim J, Clark DS, Dordick JS. 2000. Intrinsic effects of solvent polarity on enzymic activation energies. Biotechnol Bioeng. 67(1):112–116. doi:10.1002/(SICI)1097-0290(20000105)67:1<112::AID-BIT13>3.0.CO;2-E.
  • Koskinen AMP, Klibanov AM, eds. 1996. Enzymatic reactions in organic media. London (UK): Blackie Academic & Professional.
  • Laane C, Boeren S, Vos K, Veeger C. 1987. Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioeng. 30(1):81–87. doi:10.1002/bit.260300112.
  • Lee SH, Koo YM, Ha SH. 2008. Influence of ionic liquids under controlled water activity and low halide content on lipase activity. Korean J Chem Eng. 25(6):1456–1462. doi:10.1007/s11814-008-0239-3.
  • Lozano P, ed. 2022. Biocatalysis in green solvents. A volume in Foundations and Frontiers in Enzymology. Elsevier.
  • Lucas R, Comelles F, Alcántara D, Maldonado OS, Curcuroze M, Parra JL, Morales JC. 2010. Surface-active properties of lipophilic antioxidants tyrosol and hydroxytyrosol fatty acid esters: a potential explanation for the nonlinear hypothesis of the antioxidant activity in oil-in-water emulsions. J Agric Food Chem. 58(13):8021–8026. doi:10.1021/jf1009928.
  • Marzocchi S, Anankanbil S, Caboni MF, Guo Z. 2018. Enzymatic alkylsuccinylation of tyrosol: synthesis, characterization and property evaluation as a dual-functional antioxidant. Food Chem. 246:108–114. doi:10.1016/j.foodchem.2017.10.142.
  • Mateos R, Trujillo M, Pereira-Caro G, Madrona A, Cert A, Espartero JL. 2008. New lipophilic tyrosyl esters. Comparative antioxidant evaluation with hydroxytyrosyl esters. J Agric Food Chem. 56(22):10960–10966. doi:10.1021/jf8020267.
  • Narayan VS, Klibanov AM. 1993. Are water-immiscibility and apolarity of the solvent relevant to enzyme efficiency? Biotechnol Bioeng. 41(3):390–393. doi:10.1002/bit.260410314.
  • Papadopoulou AA, Katsoura MH, Chatzikonstantinou A, Kyriakou E, Polydera AC, Tzakos AG, Stamatis H. 2013. Enzymatic hybridization of α-lipoic acid with bioactive compounds in ionic solvents. Bioresour Technol. 136:41–48. doi:10.1016/j.biortech.2013.02.067.
  • Qin J, Zou X, Lv S, Jin Q, Wang X. 2016. Influence of ionic liquids on lipase activity and stability in alcoholysis reactions. RSC Adv. 6(90):87703–87709. doi:10.1039/C6RA19181A.
  • Rodríguez-Morató J, Boronat A, Kotronoulas A, Pujadas M, Pastor A, Olesti E, Pérez-Mañá C, Khymenets O, Fitó M, Farré M, et al. 2016. Metabolic disposition and biological significance of simple phenols of dietary origin: hydroxytyrosol and tyrosol. Drug Metab Rev. 48(2):218–236. doi:10.1080/03602532.2016.1179754.
  • Ryu K, Dordick JS. 1992. How do organic solvents affect peroxidase structure and function? Biochem. 31(9):2588–2598. doi:10.1021/bi00124a020.
  • Salunkhe MM, Nair RV. 2001. Novel route for the resolution of both enantiomers of dropropizine by using oxime esters and supported lipases of Pseudomonas cepacian. Enzyme Microb Technol. 28(4–5):333–338. doi:10.1016/s0141-0229(00)00347-1.
  • Schöfer SH, Kaftzik N, Wasserscheid P, Kragl U. 2001. Enzyme catalysis in ionic liquids: lipase catalysed kinetic resolution of 1-phenylethanol with improved enantioselectivity. Chem Commun. 425–426. doi:10.1039/b009389k.
  • Sun Y, Zhou D, Shahidi F. 2018. Antioxidant properties of tyrosol and hydroxytyrosol saturated fatty acid esters. Food Chem. 245:1262–1268. doi:10.1016/j.foodchem.2017.11.051.
  • Swatloski RP, Holbrey JD, Rogers RD. 2003. Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem. 5(4):361–363. doi:10.1039/b304400a.
  • Valivety RH, Halling PJ, Macrae AR. 1992a. Reaction rate with suspended lipase catalyst show similar dependence on water activity in different organic solvents. Biochim Biophys Acta. 1118(3):218–222. doi:10.1016/0167-4838(92)90278-l.
  • Valivety RH, Halling PJ, Peilow AD, Macrae AR. 1992b. Lipases from different sources vary widely in dependence of catalytic activity on water activity. Biochim Biophys Acta. 1122(2):143–146. doi:10.1016/0167-4838(92)90316-6.
  • Yang Z, Pan W. 2005. Ionic liquids: green solvents for nonaqueous biocatalysis. Enzyme Microb. Technol. 37(1):19–28. doi:10.1016/j.enzmictec.2005.02.014.
  • Yang Z, Robb DA. 1994. Partition coefficients of substrates and products and solvent selection for biocatalysis under nearly anhydrous conditions. Biotechnol Bioeng. 43(5):365–370. doi:10.1002/bit.260430504.
  • Yang Z, Russell AJ. 1996. Fundamentals of non-aqueous enzymology. In: Koskinen AMP, Klibanov AM, editors. Enzymatic reactions in organic media. London (UK): Blackie Academic & Professional, Chapter 3, p. 43–69.
  • Yang Z. 2009. Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J Biotechnol. 144(1):12–22. doi:10.1016/j.jbiotec.2009.04.011.
  • Yang Z. 2012. Ionic Liquids & Proteins: academic and some practical interactions. In: de María PD, editor. Ionic liquids in biotransformations & organocatalysis: solvents and beyond. Hoboken (NJ): John Wiley & Sons, Inc, Chapter 2, p. 15–72.
  • Yu X-W, Li Y-Q. 2005. Microencapsulated mycelium-bound tannase from Aspergillus niger. Appl Biochem Biotechnol. 126(3):177–187. doi:10.1385/abab:126:3:177.
  • Zaks A, Klibanov AM. 1988. The effect of water on enzyme action in organic media. J. Biol. Chem. 263(17):8017–8021. doi:10.1016/S0021-9258(18)68435-2.
  • Zhao H, Baker GA, Song Z, Olubajo O, Zanders L, Campbell SM. 2009. Effect of ionic liquid properties on lipase stabilization under microwave irradiation. J. Mol. Catal. B: enzym. 57(1-4):149–157. doi:10.1016/j.molcatb.2008.08.006.
  • Zhao H. 2016. Protein stabilization and enzyme activation in ionic liquids: specific ion effects. J Chem Technol Biotechnol. 91(1):25–50. doi:10.1002/jctb.4837.
  • Zhao H. 2020. What do we learn from enzyme behaviors in organic solvents? – Structural functionalization of ionic liquids for enzyme activation and stabilization. Biotechnol Adv. 45:107638. doi:10.1016/j.biotechadv.2020.107638.
  • Zhou D-Y, Sun Y-X, Shahidi F. 2017. Preparation and antioxidant activity of tyrosol and hydroxytyrosol esters. J. Functional Foods. 37:66–73. doi:10.1016/j.jff.2017.06.042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.