23
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Acrylic modification as an environmentally acceptable supporter for improving peroxidase enzyme: stability and reusability

Received 06 Feb 2024, Accepted 01 Apr 2024, Published online: 10 Apr 2024

References

  • Abdelraheem EMM, Busch H, Hanefeld U, Tonin F. 2019. Biocatalysis explained: from pharmaceutical to bulk chemical production. React Chem Eng. 4(11):1878–1894. doi: 10.1039/C9RE00301K.
  • Abdulaal WH, Almulaiky YQ, El-Shishtawy RM. 2020. Encapsulation of HRP enzyme onto a magnetic Fe3O4 Np–PMMA film via casting with sustainable biocatalytic activity. Catalysts. 10(2):181. doi: 10.3390/catal10020181.
  • Ahmad T, Wani IA, Manzoor N, Ahmed J, Asiri AM. 2013. Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf B Biointerfaces. 107:227–234. doi: 10.1016/j.colsurfb.2013.02.004.
  • Allehyani ES, Almulaiky YQ, Al-Harbi SA, El-Shishtawy RM. 2022. In situ coating of polydopamine-AgNPs on polyester fabrics producing antibacterial and antioxidant properties. Polymers. 14(18):3794. doi: 10.3390/polym14183794.
  • Almaghrabi O, Almulaiky YQ. 2022. A biocatalytic system obtained via immobilization of urease onto magnetic metal/alginate nanocomposite: improving reusability and enhancing stability. Biocatal Biotransform. 41(6):456–465.
  • Almulaiky YQ, Aqlan FM, Aldhahri M, Baeshen M, Khan TJ, Khan KA, Afifi M, Al-Farga A, Warsi MK, Alkhaled M, et al. 2018. α-Amylase immobilization on amidoximated acrylic microfibres activated by cyanuric chloride. R Soc Open Sci. 5(11):172164. doi: 10.1098/rsos.172164.
  • Almulaiky YQ, El-Shishtawy RM, Aldhahri M, Mohamed SA, Afifi M, Abdulaal WH, Mahyoub JA. 2019. Amidrazone modified acrylic fabric activated with cyanuric chloride: a novel and efficient support for horseradish peroxidase immobilization and phenol removal. Int J Biol Macromol. 140:949–958. doi: 10.1016/j.ijbiomac.2019.08.179.
  • Almulaiky YQ. 2022. Polyester fabric modification by chemical treatment to enhancing the β-glucosidase immobilization. Heliyon. 8(11):e11660. doi: 10.1016/j.heliyon.2022.e11660.
  • Al-Najada AR, Almulaiky YQ, Aldhahri M, El-Shishtawy RM, Mohamed SA, Baeshen M, Al-Farga A, Abdulaal WH, Al-Harbi SA. 2019. Immobilisation of α-amylase on activated amidrazone acrylic fabric: a new approach for the enhancement of enzyme stability and reusability. Sci Rep. 9(1):12672. doi: 10.1038/s41598-019-49206-w.
  • Alzahrani HA. 2022. Encapsulation of peroxidase on hydrogel sodium polyacrylate spheres incorporated by silver and gold nanoparticles: a comparative study. MGC. 21(3):919–927. doi: 10.3233/MGC-220033.
  • Arsalan A, Alam MF, Zofair SFF, Ahmad S, Younus H. 2020. Immobilization of β-galactosidase on tannic acid stabilized silver nanoparticles: a safer way towards its industrial application. Spectrochim Acta A Mol Biomol Spectrosc. 226:117637. doi: 10.1016/j.saa.2019.117637.
  • Asmat S, Husain Q, Azam A. 2017. Lipase immobilization on facile synthesized polyaniline-coated silver-functionalized graphene oxide nanocomposites as novel biocatalysts: stability and activity insights. RSC Adv. 7(9):5019–5029. doi: 10.1039/C6RA27926K.
  • Bakar B, Birhanlı E, Ulu A, Boran F, Yeşilada Ö, Ateş B. 2023. Immobilization of Trametes trogii laccase on polyvinylpyrrolidone-coated magnetic nanoparticles for biocatalytic degradation of textile dyes. Biocatal Biotransform. 42(2):194–211. doi: 10.1080/10242422.2023.2173006.
  • Bangoria P, Chaki S, Shah AR. 2023. Immobilization of fungal α-galactosidase on magnetic nanoparticles and hydrolysis of raffinose family oligosaccharides (RFO) in soymilk. Biocatal Biotransform. 13:1–13. doi: 10.1080/10242422.2023.2247516.
  • Bilal M, Iqbal HM. 2019. Chemical, physical, and biological coordination: an interplay between materials and enzymes as potential platforms for immobilization. Coord Chem Rev. 388:1–23. doi: 10.1016/j.ccr.2019.02.024.
  • Bilal M, Jing Z, Zhao Y, Iqbal HM. 2019. Immobilization of fungal laccase on glutaraldehyde cross-linked chitosan beads and its bio-catalytic potential to degrade bisphenol A. Biocatal Agric Biotechnol. 19:101174. doi: 10.1016/j.bcab.2019.101174.
  • Bilal M, Nguyen TA, Iqbal HM. 2020. Multifunctional carbon nanotubes and their derived nano-constructs for enzyme immobilization–A paradigm shift in biocatalyst design. Coord Chem Rev. 422:213475. doi: 10.1016/j.ccr.2020.213475.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1–2):248–254. doi: 10.1006/abio.1976.9999.
  • Califano V, Costantini A, Silvestri B, Venezia V, Cimino S, Sannino F. 2019. The effect of pore morphology on the catalytic performance of β-glucosidase immobilized into mesoporous silica. Pure Appl Chem. 91(10):1583–1592. doi: 10.1515/pac-2018-1202.
  • Cantone S, Ferrario V, Corici L, Ebert C, Fattor D, Spizzo P, Gardossi L. 2013. Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem Soc Rev. 42(15):6262–6276. doi: 10.1039/c3cs35464d.
  • Chang Q, Tang H. 2014. Immobilization of horseradish peroxidase on NH2-modified magnetic Fe3O4/SiO2 particles and its application in removal of 2, 4-dichlorophenol. Molecules. 19(10):15768–15782. doi: 10.3390/molecules191015768.
  • dos Santos JCS, Garcia-Galan C, Rodrigues RC, de Sant’ Ana HB, Gonçalves LRB, Fernandez-Lafuente R. 2014. Improving the catalytic properties of immobilized Lecitase via physical coating with ionic polymers. Enzyme Microb Technol. 60:1–8. doi: 10.1016/j.enzmictec.2014.03.001.
  • El-Shishtawy RM, Al Angari YM, Alotaibi MM, Almulaiky YQ. 2023. Acrylic fabric and nanomaterials to enhance α-amylase-based biocatalytic immobilized systems for industrial food applications. Int J Biol Macromol. 233:123539. doi: 10.1016/j.ijbiomac.2023.123539.
  • Gan J, Bagheri AR, Aramesh N, Gul I, Franco M, Almulaiky YQ, Bilal M. 2021. Covalent organic frameworks as emerging host platforms for enzyme immobilization and robust biocatalysis–a review. Int J Biol Macromol. 167:502–515. doi: 10.1016/j.ijbiomac.2020.12.002.
  • Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC. 2011. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal. 353(16):2885–2904. doi: 10.1002/adsc.201100534.
  • Gherardi F, Turyanska L, Ferrari E, Weston N, Fay MW, Colston BJ. 2019. Immobilized enzymes on gold nanoparticles: from enhanced stability to cleaning of heritage textiles. ACS Appl Bio Mater. 2(11):5136–5143. doi: 10.1021/acsabm.9b00802.
  • Iñarritu I, Torres E, Topete A, Campos-Terán J. 2017. Immobilization effects on the photocatalytic activity of CdS quantum Dots-Horseradish peroxidase hybrid nanomaterials. J Colloid Interface Sci. 506:36–45. doi: 10.1016/j.jcis.2017.07.015.
  • Jonović M, Jugović B, Žuža M, Đorđević V, Milašinović N, Bugarski B, Knežević-Jugović Z. 2022. Immobilization of horseradish peroxidase on magnetite-alginate beads to enable effective strong binding and enzyme recycling during anthraquinone dyes’ degradation. Polymers. 14(13):2614. doi: 10.3390/polym14132614.
  • Kang H, Buchman JT, Rodriguez RS, Ring HL, He J, Bantz KC, Haynes CL. 2018. Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities. Chem Rev. 119(1):664–699. doi: 10.1021/acs.chemrev.8b00341.
  • Lipińska W, Grochowska K, Siuzdak K. 2021. Enzyme immobilization on gold nanoparticles for electrochemical glucose biosensors. Nanomaterials. 11(5):1156. doi: 10.3390/nano11051156.
  • Liu A, Huang X, Song S, Wang D, Lu X, Qu Y, Gao P. 2003. Kinetics of the H2O2-dependent ligninase-catalyzed oxidation of veratryl alcohol in the presence of cationic surfactant studied by spectrophotometric technique. Spectrochim Acta A Mol Biomol Spectrosc. 59(11):2547–2551. doi: 10.1016/s1386-1425(02)00444-4.
  • Liu ZM, Tingry S, Innocent C, Durand J, Xu ZK, Seta P. 2006. Modification of microfiltration polypropylene membranes by allylamine plasma treatment: influence of the attachment route on peroxidase immobilization and enzyme efficiency. Enzyme Microb Technol. 39(4):868–876. doi: 10.1016/j.enzmictec.2006.01.016.
  • Melaine F, Roupioz Y, Buhot A. 2015. Gold nanoparticles surface plasmon resonance enhanced signal for the detection of small molecules on split-aptamer microarrays (small molecules detection from split-aptamers). Microarrays. 4(1):41–52. doi: 10.3390/microarrays4010041.
  • Min K, Kim J, Park K, Yoo YJ. 2012. Enzyme immobilization on carbon nanomaterials: loading density investigation and zeta potential analysis. J Mol Catal B: enzym. 83:87–93. doi: 10.1016/j.molcatb.2012.07.009.
  • Monteiro RRC, Neto DMA, Fechine PBA, Lopes AAS, Gonçalves LRB, Dos Santos JCS, de Souza MCM, Fernandez-Lafuente R. 2019. Ethyl butyrate synthesis catalyzed by lipases A and B from Candida antarctica immobilized onto magnetic nanoparticles. Improvement of biocatalysts’ performance under ultrasonic irradiation. Int J Mol Sci. 20(22):5807. doi: 10.3390/ijms20225807.
  • Morshed MN, Behary N, Bouazizi N, Guan J, Nierstrasz VA. 2021. An overview on biocatalysts immobilization on textiles: preparation, progress and application in wastewater treatment. Chemosphere. 279:130481. doi: 10.1016/j.chemosphere.2021.130481.
  • Naveed M, Nadeem F, Mehmood T, Bilal M, Anwar Z, Amjad F. 2020. Protease—a versatile and ecofriendly biocatalyst with multi-industrial applications: an updated review. Catal Lett. 151(2):307–323. doi: 10.1007/s10562-020-03316-7.
  • Patila M, Athanasiou PE, Kortessis L, Potsi G, Kouloumpis A, Gournis D, Stamatis H. 2022. Immobilization of laccase on hybrid super-structured nanomaterials for the decolorization of phenolic dyes. Processes. 10(2):233. doi: 10.3390/pr10020233.
  • Pota G, Gallucci N, Cavasso D, Krauss IR, Vitiello G, López-Gallego F, Costantini A, Paduano L, Califano V. 2023. Controlling the adsorption of β-glucosidase onto wrinkled SiO2 nanoparticles to boost the yield of immobilization of an efficient biocatalyst. Langmuir. 39(4):1482–1494. doi: 10.1021/acs.langmuir.2c02861.
  • Ramalingam V. 2019. Multifunctionality of gold nanoparticles: plausible and convincing properties. Adv Colloid Interface Sci. 271:101989. doi: 10.1016/j.cis.2019.101989.
  • Rao SQ, Zhang RY, Chen R, Gao YJ, Gao L, Yang ZQ. 2022. Nanoarchitectonics for enhanced antibacterial activity with Lactobacillus buchneri S-layer proteins-coated silver nanoparticles. J Hazard Mater. 426:128029. doi: 10.1016/j.jhazmat.2021.128029.
  • Ren S, Wang Z, Bilal M, Feng Y, Jiang Y, Jia S, Cui J. 2020. Co-immobilization multienzyme nanoreactor with co-factor regeneration for conversion of CO2. Int J Biol Macromol. 155:110–118. doi: 10.1016/j.ijbiomac.2020.03.177.
  • Rios NS, Morais EG, Dos Santos Galvão W, Andrade Neto DM, Dos Santos JCS, Bohn F, Correa MA, Fechine PBA, Fernandez-Lafuente R, Gonçalves LRB. 2019. Further stabilization of lipase from Pseudomonas fluorescens immobilized on octyl coated nanoparticles via chemical modification with bifunctional agents. Int J Biol Macromol. 141:313–324. doi: 10.1016/j.ijbiomac.2019.09.003.
  • Rodrigues RC, Virgen-Ortíz JJ, dos Santos JCS, Berenguer-Murcia Á, Alcantara AR, Barbosa O, Ortiz C, Fernandez-Lafuente R. 2019. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv. 37(5):746–770. doi: 10.1016/j.biotechadv.2019.04.003.
  • Shakilanishi S, Shanthi C. 2024. An overview on preparation of enzymes for industrial use. Biocatal Biotransform. :1–12. doi: 10.1080/10242422.2024.2311098.
  • Sheikh IA, Yasir M, Khan I, Khan SB, Azum N, Jiffri EH, Kamal MA, Ashraf GM, Beg MA. 2018. Lactoperoxidase immobilization on silver nanoparticles enhances its antimicrobial activity. J Dairy Res. 85(4):460–464. doi: 10.1017/S0022029918000730.
  • Sigurdardóttir SB, Lehmann J, Grivel JC, Zhang W, Kaiser A, Pinelo M. 2019. Alcohol dehydrogenase on inorganic powders: zeta potential and particle agglomeration as main factors determining activity during immobilization. Colloids Surf B Biointerfaces. 175:136–142. doi: 10.1016/j.colsurfb.2018.11.080.
  • Verma ML, Rajkhowa R, Wang X, Barrow CJ, Puri M. 2013. Exploring novel ultrafine Eri silk bioscaffold for enzyme stabilisation in cellobiose hydrolysis. Bioresour Technol. 145:302–306. doi: 10.1016/j.biortech.2013.01.065.
  • Wang G, Liu J, Yue F, Shen Z, Xu D, Fang H, Chen W, Wang Z, Li P, Guo Y, et al. 2022. Dual enzyme electrochemiluminescence sensor based on in situ synthesis of ZIF-67@ AgNPs for the detection of IMP in fresh meat. LWT. 165:113658. doi: 10.1016/j.lwt.2022.113658.
  • Wang T, Liu J, Ren J, Wang J, Wang E. 2015. Mimetic biomembrane–AuNPs–graphene hybrid as matrix for enzyme immobilization and bioelectrocatalysis study. Talanta. 143:438–441. doi: 10.1016/j.talanta.2015.05.022.
  • Weber AC, da Silva BE, Cordeiro SG, Henn GS, Costa B, Dos Santos JSH, Corbellini VA, Ethur EM, Hoehne L. 2023. Immobilization of commercial horseradish peroxidase in calcium alginate-starch hybrid support and its application in the biodegradation of phenol red dye. Int J Biol Macromol. 246:125723. doi: 10.1016/j.ijbiomac.2023.125723.
  • Xie X, Luo P, Han J, Chen T, Wang Y, Cai Y, Liu Q. 2019. Horseradish peroxidase immobilized on the magnetic composite microspheres for high catalytic ability and operational stability. Enzyme Microb Technol. 122:26–35. doi: 10.1016/j.enzmictec.2018.12.007.
  • Yuan T, Zeng J, Wang B, Cheng Z, Gao W, Xu J, Chen K. 2021. Silver nanoparticles immobilized on cellulose nanofibrils for starch-based nanocomposites with high antibacterial, biocompatible, and mechanical properties. Cellulose. 28(2):855–869. doi: 10.1007/s10570-020-03567-y.
  • Yuan ZY, Jiang TJ. 2003. Horseradish peroxidase. In: Whitaker JR, Voragen A, Wong DWS, editors. Handbook of food enzymology. New York: Marcel Dekker Inc; p. 403–411.
  • Zeyadi M, Almulaiky YQ. 2023. Amino functionalized metal–organic framework as eco-friendly support for enhancing stability and reusability of horseradish peroxidase for phenol removal. Biomass Conv Bioref. 1–13. doi: 10.1007/s13399-023-04597-9.
  • Zhang F, Wang R, Zhen C, Li B. 2016. Magnetic cellulose nanocrystals: synthesis by electrostatic self-assembly approach and efficient use for immobilization of papain. J Mol Catal B Enzym. 134:164–171. doi: 10.1016/j.molcatb.2016.11.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.