67
Views
0
CrossRef citations to date
0
Altmetric
Research Article

L-fuculokinase-catalyzed phosphorylation and its use for the straightforward synthesis of L-fuculose-1-phosphate

, , , , , & ORCID Icon show all
Received 21 Jan 2024, Accepted 15 Apr 2024, Published online: 16 May 2024

References

  • Autieri SM, Lins JJ, Leatham MP, Laux DC, Conway T, Cohen PS. 2007. L-fucose stimulates utilization of D-ribose by Escherichia coli MG1655 ΔfucAO and E. coli Nissle 1917 ΔfucAO mutants in the mouse intestine and in M9 minimal medium. Infect Immun. 75(11):5465–5475. doi:10.1128/IAI.00822-07.
  • Baldomà L, Aguilar J. 1988. Metabolism of L-fucose and L-rhamnose in Escherichia coli: aerobic-anaerobic regulation of L-lactaldehyde dissimilation. J Bacteriol. 170(1):416–421. doi:10.1128/jb.170.1.416-421.1988.
  • Bartkus JM, Mortlock JP. 1986. Isolation of a mutation resulting in constitutive synthesis of L-fucose catabolic enzymes. J Bacteriol. 165(3):710–714. doi:10.1128/jb.165.3.710-714.1986.
  • Becerra JE, Yebra MJ, Monedero V. 2015. An L-fucose operon in the probiotic Lactobacillus rhamnosus GG is involved in adaptation to gastrointestinal conditions. Appl Environ Microbiol. 81(11):3880–3888. doi:10.1128/AEM.00260-15.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1-2):248–254. doi:10.1006/abio.1976.9999.
  • Chen Y-M, Zhu Y, Lin ECC. 1987. The organization of the fuc regulon specifying L-fucose dissimilation in Escherichia coli K12 as determined by gene cloning. Mol Gen Genet. 210(2):331–337. doi:10.1007/BF00325702.
  • Chen YM, Lu Z, Lin EC. 1989. Constitutive activation of the fucAO operon and silencing of the divergently transcribed fucPIK operon by an IS5 element in Escherichia coli mutants selected for growth on L-1,2-propanediol. J Bacteriol. 171(11):6097–6105. doi:10.1128/jb.171.11.6097-6105.1989.
  • Elsinghorst EA, Mortlock RP. 1996. Molecular cloning of the Escherichia coli B L-fucose-D-arabinose gene cluster. J Bacteriol. 176(23):7223–7232. doi:10.1128/jb.176.23.7223-7232.1994.
  • Ferlez B, Sutter M, Kerfeld CA. 2019. Glycyl radical enzyme-associated microcompartments: redox-replete bacterial organelles. mBio. 10(1):e02327-18. doi:10.1128/mBio.02327-18.
  • Fessner WD, Sinerius G, Schneider A, Dreyer M, Schulz GE, Badia J, Aguilar J. 1991. Diastereoselective enzymatic aldol additions: l-rhamnulose and L-fuculose 1-phosphate aldolases from E. coli. Angew Chem Int Ed Engl. 30(5):555–558. doi:10.1002/anie.199105551.
  • Gao B, Jin M, Li L, Qu W, Zeng R. 2017. Genome sequencing reveals the complex polysaccharide-degrading ability of novel deep-sea bacterium Flammeovirga pacifica WPAGA1. Front Microbiol. 8:600. doi:10.3389/fmicb.2017.00600.
  • Gauss D, Schoenenberger B, Wohlgemuth R. 2014. Chemical and enzymatic methodologies for the synthesis of enantiomerically pure glyceraldehyde 3-phosphates. Carbohydr Res. 389:18–24. doi:10.1016/j.carres.2013.12.023.
  • Gauss D, Schoenenberger B, Molla GS, Kinfu BM, Chow J, Liese A, Streit W, Wohlgemuth R. 2016. Biocatalytic phosphorylation of metabolites in: applied biocatalysis - from fundamental science to industrial applications. (Eds.: liese A, Hilterhaus L, Kettling U, Antranikian G), Wiley-VCH, Weinheim, Germany, p. 147–177.
  • Ghalambor MA, Heath EC. 1962. The metabolism of L-fucose II. The enzymatic cleavage of L-fuculose l-phosphate. J Biol Chem. 237(8):2427–2433. doi:10.1016/S0021-9258(19)73768-5.
  • Grueninger D, Schulz GE. 2006. Structure and reaction mechanism of L-rhamnulose kinase from Escherichia coli. J Mol Biol. 359(3):787–797. doi:10.1016/j.jmb.2006.04.013.
  • Hardt N, Kind S, Schoenenberger B, Eggert T, Obkircher M, Wohlgemuth R. 2019. Facile synthesis of D-xylulose-5-phosphate and L-xylulose-5-phosphate by xylulokinase-catalyzed phosphorylation. Biocatal Biotrans. 38(1):1–11.
  • Hardt N, Kinfu BM, Chow J, Streit WR, Schoenenberger B, Obkircher M, Wohlgemuth R. 2017. Biocatalytic asymmetric phosphorylation catalyzed by recombinant glycerate-2-kinase. Chembiochem. 18(15):1518–1522. doi:10.1002/cbic.201700201.
  • Heath EC, Ghalambor MA. 1962. The metabolism of L-fucose. I. The purification and properties of L-fuculose kinase. J Biol Chem. 237(8):2423–2426. doi:10.1016/S0021-9258(19)73767-3.
  • Higgins MA, Suits MD, Marsters C, Boraston AB. 2014. Structural and functional analysis of fucose-processing enzymes from Streptococcus pneumoniae. J Mol Biol. 426(7):1469–1482. doi:10.1016/j.jmb.2013.12.006.
  • Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI. 1999. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci U S A. 96(17):9833–9838. doi:10.1073/pnas.96.17.9833.
  • Joerger AC, Gosse C, Fessner WD, Schulz GE. 2000. Catalytic action of fuculose 1-phosphate aldolase (class II) as derived from structure-directed mutagenesis. Biochemistry. 39(20):6033–6041. doi:10.1021/bi9927686.
  • Kim J, Jin YS, Kim KH. 2023. L-Fucose is involved in human–gut microbiome interactions. Appl Microbiol Biotechnol. 107(12):3869–3875. doi:10.1007/s00253-023-12527-y.
  • Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227(5259):680–685. doi:10.1038/227680a0.
  • Leblanc DJ, Mortlock RP. 1971a. Metabolism of D-arabinose: origin of a D-ribulokinase activity in Escherichia coli. J Bacteriol. 106(1):82–89. doi:10.1128/jb.106.1.82-89.1971.
  • Leblanc DJ, Mortlock RP. 1971b. Metabolism of D-arabinose: a new pathway in Escherichia coli. J Bacteriol. 106(1):90–96. doi:10.1128/jb.106.1.90-96.1971.
  • Leblanc DJ, Mortlock RP. 1972. The metabolism of D-arabinose: alternate kinases for the phosphorylation of D-ribulose in Escherichia coli and Aerobacter aerogenes. Arch Biochem Biophys. 150(2):774–781. doi:10.1016/0003-9861(72)90097-5.
  • Li Z-J, Hong P-H, Da Y-Y, Li L-K, Stephanopoulos G. 2018. Metabolic engineering of Escherichia coli for the production of L-malate from xylose. Metab Eng. 48:25–32. doi:10.1016/j.ymben.2018.05.010.
  • Molla GS, Kinfu BM, Chow J, Streit W, Wohlgemuth R, Liese A. 2017. Bioreaction engineering leading to efficient synthesis of L-glyceraldehyd-3-phosphate. Biotechnol J. 12(3):1600625. doi:10.1002/biot.201600625.
  • Old DC, Mortlock RP. 1977. The metabolism of D-arabinose by Salmonella typhimurium. J Gen Microbiol. 101(2):341–344. doi:10.1099/00221287-101-2-341.
  • Ozaki A, Toone EJ, Von der Osten CH, Sinskey AJ, Whitesides GM. 1990. Overproduction and substrate specificity of a bacterial fuculose-1-phosphate aldolase: a new enzymic catalyst for stereocontrolled aldol condensation. J Am Chem Soc. 112(12):4970–4971. doi:10.1021/ja00168a058.
  • Pereira B, Li Z-J, De Mey M, Lim CG, Zhang H, Hoeltgen C, Stephanopoulos G. 2016. Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate. Metab Eng. 34:80–87. doi:10.1016/j.ymben.2015.12.004.
  • Ravcheev DA, Thiele I. 2017. Comparative genomic analysis of the human gut microbiome reveals a broad distribution of metabolic pathways for the degradation of host-synthetized Mucin glycans and utilization of mucin-derived monosaccharides. Front Genet. 8:111. doi:10.3389/fgene.2017.00111.
  • Salusjärvi L, Havukainen S, Koivistoinen O, Toivari M. 2019. Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives. Appl Microbiol Biotechnol. 103(6):2525–2535. doi:10.1007/s00253-019-09640-2.
  • Schoenenberger B, Kind S, Meier R, Eggert T, Obkircher M, Wohlgemuth R. 2019. Efficient biocatalytic synthesis of D-tagatose 1,6-diphosphate by LacC-catalysed phosphorylation of D-tagatose 6-phosphate. Biocatal  Biotrans. 38(1):1–11.
  • Scott KP, Martin JC, Campbell G, Mayer C-D, Flint JH. 2006. Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium “Roseburia inulinivorans”. J Bacteriol. 188(12):4340–4349. doi:10.1128/JB.00137-06.
  • Song H, Yoo Y, Hwang J, Na YC, Kim HS. 2016. Faecalibacterium prausnitzii subspecies–level dysbiosis in the human gut microbiome underlying atopic dermatitis. J Allergy Clin Immunol. 137(3):852–860. doi:10.1016/j.jaci.2015.08.021.
  • Studier FW, Moffatt BA. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 189(1):113–130. doi:10.1016/0022-2836(86)90385-2.
  • The UniProt Consortium. 2019. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47(D1):D506–D515. doi:10.1093/nar/gky1049.
  • Wohlgemuth R, Liese A, Streit W. 2017. Biocatalytic phosphorylations of metabolites: past, present, and future. Trends Biotechnol. 35(5):452–465. doi:10.1016/j.tibtech.2017.01.005.
  • Wohlgemuth R. 2022. The power of biocatalysts for highly selective and efficient phosphorylation Reactions. Catalysts. 12(11):1436. doi:10.3390/catal12111436.
  • Zhang Y, Zagnitko O, Rodionova I, Osterman A, Godzik A. 2011. The FGGY carbohydrate kinase family: insights into the evolution of functional specificities. PLoS Comput Biol. 7(12):e1002318. doi:10.1371/journal.pcbi.1002318.
  • Zhou P, Lajoie G, Honek JF, Nambiar PTC, Ward OP. 1992. Facile synthesis of 6-deoxy-L-arabino-hexulose(L-rhamnulose) l-phosphate via regioselective phosphoryla-tion of the unprotected sugar. Carbohydrate Res. 232(1):177–181. doi:10.1016/S0008-6215(00)91005-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.