46
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Turning noncovalent interactions via halogen substituents for improving activity and enantioselectivity of Candida antarctica lipase B

&
Pages 497-508 | Received 15 Jun 2020, Accepted 23 Apr 2024, Published online: 09 May 2024

References

  • Bamberger J, Ostler F, Mancheño OG. 2019. Frontiers in halogen and chalcogen-bond donor organocatalysis. ChemCatChem. 11(21):5198–5211. doi: 10.1002/cctc.201901215.
  • Banerjee R, Desiraju GR, Mondal R, Howard JAK. 2004. Organic chlorine as a hydrogen-bridge acceptor: evidence for the existence of intramolecular O-H⋯Cl-C interactions in some gem-alkynols. Chemistry. 10(14):3373–3383. doi: 10.1002/chem.200400003.
  • Berger G, Soubhye J, Meyer F. 2015. Halogen bonding in polymer science: from crystal engineering to functional supramolecular polymers and materials. Polym Chem. 6(19):3559–3580. doi: 10.1039/C5PY00354G.
  • Bissantz C, Kuhn B, Stahl M. 2010. A medicinal chemist’s guide to molecular interactions. J Med Chem. 53(14):5061–5084. doi: 10.1021/jm100112j.
  • Böhm H-J, Banner D, Bendels S, Kansy M, Kuhn B, Müller K, Obst-Sander U, Stahl M. 2004. Fluorine in medicinal chemistry. Chembiochem. 5(5):637–643. doi: 10.1002/cbic.200301023.
  • Bulfield D, Huber SM. 2016. Halogen bonding in organic synthesis and organocatalysis. Chemistry. 22(41):14434–14450. doi: 10.1002/chem.201601844.
  • Carlsson A-CC, Scholfield MR, Rowe RK, Ford MC, Alexander AT, Mehl RA, Ho PS. 2018. Increasing enzyme stability and activity through hydrogen bond-enhanced halogen bonds. Biochemistry. 57(28):4135–4147. doi: 10.1021/acs.biochem.8b00603.
  • Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G. 2016. The halogen bond. Chem Rev. 116(4):2478–2601. doi: 10.1021/acs.chemrev.5b00484.
  • Cesario D, Fortino M, Marino T, Nunzi F, Russo N, Sicilia E. 2019. The role of the halogen bond in iodothyronine deiodinase: dependence on chalcogen substitution in naphthyl-based mimetics. J Comput Chem. 40(8):944–951. doi: 10.1002/jcc.25775.
  • Champagne E, Strandman S, Zhu X-X. 2016. Recent developments and optimization of lipase-catalyzed lactone formation and ring-opening polymerization. Macromol Rapid Commun. 37(24):1986–2004. doi: 10.1002/marc.201600494.
  • Chen J, Levant B, Jiang C, Keck TM, Newman AH, Wang S. 2014. Tranylcypromine substituted cis-hydroxycyclobutyl­naphthamides as potent and selective dopamine D3 receptor antagonists. J Med Chem. 57(11):4962–4968. doi: 10.1021/jm401798r.
  • Courty A, Mons M, Dimicoli I, Piuzzi F, Gaigeot M-P, Brenner V, de Pujo P, Millié P. 1998. Quantum effects in the threshold photoionization and energetics of the benzene-H2O and benzene-D2O complexes: experiment and simulation. J Phys Chem A. 102(33):6590–6600. doi: 10.1021/jp980761c.
  • de la Roza O, DiLabio GA. 2017. Non-covalent interactions in quantum chemistry and physics: theory and applications. Amsterdam: Elsevier; p. 1–459.
  • Desiraju GR. 2013. Crystal engineering: from molecule to crystal. J Am Chem Soc. 135(27):9952–9967. doi: 10.1021/ja403264c.
  • Facin BR, Melchiors MS, Valério A, Oliveira JV, Oliveira D d 2019. Driving immobilized lipases as biocatalysts: 10 years state of the art and future prospects. Ind Eng Chem Res. 58(14):5358–5378. doi: 10.1021/acs.iecr.9b00448.
  • Fioravanti R, Romanelli A, Mautone N, Di Bello E, Rovere A, Corinti A, Zwergel C, Valente S, Rotili D, Botrugno OA, et al. 2020. Tranylcypromine-based LSD1 inhibitors: structure-activity relationships, antiproliferative effects in leukemia, and gene target modulation. ChemMedChem. 15(7):643–658. doi: 10.1002/cmdc.201900730.
  • Fortino M, Marino T, Russo N, Sicilia E. 2015. Mechanism of thyroxine deiodination by naphthyl-based iodothyronine deiodinase mimics and the halogen bonding role: a DFT investigation. J Chemistry. 21(23):8554–8560. doi: 10.1002/chem.201406466.
  • Fujii A, Hayashi H, Park JW, Kazama T, Mikami N, Tsuzuki S. 2011. Experimental and theoretical determination of the accurate CH/π interaction energies in benzene–alkane clusters: correlation between interaction energy and polarizability. Phys Chem Chem Phys. 13(31):14131–14141. doi: 10.1039/c1cp20203k.
  • García-Urdiales E, Alfonso I, Gotor V. 2011. Update 1 of: enantioselective enzymatic desymmetrizations in organic synthesis. Chem Rev. 111(5):PR110–PR180. doi: 10.1021/cr100330u.
  • Gilday LC, Robinson SW, Barendt TA, Langton MJ, Mullaney BR, Beer PD. 2015. Halogen bonding in supramolecular chemistry. Chem Rev. 115(15):7118–7195. doi: 10.1021/cr500674c.
  • Hernandes M, Cavalcanti SM, Moreira DR, de Azevedo W, Jr, Leite AC. 2010. Halogen atoms in the modern medicinal chemistry: hints for the drug design. Curr Drug Targets. 11(3):303–314. doi: 10.2174/138945010790711996.
  • Hogan WL, van Mourik T. 2019. Halogen bonding in mono- and dihydrated halobenzene. J Comput Chem. 40(3):554–561. doi: 10.1002/jcc.25733.
  • Jedwabny W, Dyguda-Kazimierowicz E. 2019. Revisiting the halogen bonding between phosphodiesterase type 5 and its inhibitors. J Mol Model. 25(2):29. doi: 10.1007/s00894-018-3897-z.
  • Jiang S, Zhang L, Cui D, Yao Z, Gao B, Lin J, Wei D. 2016. The important role of halogen bond in substrate selectivity of enzymatic catalysis. Sci Rep. 6(1):34750. doi: 10.1038/srep34750.
  • Jiang L, Zhang X, Zhou Y, Chen Y, Luo Z, Li J, Yuan C, Huang M. 2018. Halogen bonding for the design of inhibitors by targeting the S1 pocket of serine proteases. RSC Adv. 8(49):28189–28197. doi: 10.1039/c8ra03145b.
  • Karshikoff A. 2006. Non-covalent interactions in proteins. Singapore: World Scientific; p. 1–334.
  • Khan MNA, Suzuki T, Miyata N. 2013. An overview of phenylcyclopropylamine derivatives: biochemical and biological significance and recent developments. Med Res Rev. 33(4):873–910. doi: 10.1002/med.21269.
  • Kolář MH, Hobza P. 2016. Computer modeling of halogen bonds and other σ-hole interactions. Chem Rev. 116(9):5155–5187. doi: 10.1021/acs.chemrev.5b00560.
  • Kolář MH, Tabarrini O. 2017. Halogen bonding in nucleic acid complexes. J Med Chem. 60(21):8681–8690. doi: 10.1021/acs.jmedchem.7b00329.
  • Kovacs A, Varga Z. 2006. Halogen acceptors in hydrogen bonding. Coor Chem Rev. 250(5–6):710–727. doi: 10.1016/j.ccr.2005.04.031.
  • Kumar R, Maikhuri VK, Mathur D, Kumar M, Singh N, Prasad A. 2024. Novozyme-435: perfect catalyst for chemo- and regio-selective synthesis of modified carbohydrates–a review. Biocatal Biotransform. 42(1):19–33. doi: 10.1080/10242422.2023.2191775.
  • Kurek SS, Romańczyk PP. 2019. Chapter 14: Noncovalent interaction-assisted redox catalysis in reductive dehalogenation. In: Mahmudov KT, Kopylovich MN, Fatima M, da Silva CG, Pombeiro AJL, editors. Noncovalent interactions in catalysis. Burlington House, London: RSC Catal Ser. 37; p. 302–323.
  • Li D, Liang H, Wei Y, Xiao H, Peng X, Pan W. 2024. Exploring the potential of histone demethylase inhibition in multi-therapeutic approaches for cancer treatment. Eur J Med Chem. 264:115999. doi: 10.1016/j.ejmech.2023.115999.
  • Lima RN, dos Anjos CS, Orozco EVM, Porto ALM. 2019. Versatility of Candida antarctica lipase in the amide bond formation applied in organic synthesis and biotechnological processes. Mol Catal. 466:75–105. doi: 10.1016/j.mcat.2019.01.007.
  • Lin F-Y, MacKerell AD. 2017. Do halogen-hydrogen bond donor interactions dominate the favorable contribution of halogens to ligand-protein binding? J Phys Chem B. 121(28):6813–6821. doi: 10.1021/acs.jpcb.7b04198.
  • Li Z, Yuan Y, Wang P, Zhang Z, Ma H, Sun Y, Zhang X, Li X, Qiao Y, Zhang F, et al. 2023. Design, synthesis and in vitro/in vivo anticancer activity of tranylcypromine-based triazolopyrimidine analogs as novel LSD1 inhibitors. Eur J Med Chem. 253:115321. doi: 10.1016/j.ejmech.2023.115321.
  • Lu Y, Wang Y, Xu Z, Yan X, Luo X, Jiang H, Zhu W. 2009. Fluorine in medicinal chemistry. J Phys Chem B. 113(37):12615–12621. doi: 10.1021/jp906352e.
  • Lu Y, Wang Y, Zhu W. 2010. Nonbonding interactions of organic halogens in biological systems: implications for drug discovery and biomolecular design. Phys Chem Chem Phys. 12(18):4543–4551. doi: 10.1039/b926326h.
  • Ma QS, Zhang YF, Li CY, Zhang WX, Zhang Yuan L, Niu JB, Song J, Zhang SY, Liu HM. 2023. Discovery of novel tranylcypromine-based derivatives as LSD1 inhibitors for gastric cancer treatment. Eur J Med Chem. 251:115228. doi: 10.1016/j.ejmech.2023.115228.
  • Mahadevi AS, Sastry GN. 2016. Cooperativity in noncovalent interactions. Chem Rev. 116(5):2775–2825. doi: 10.1021/cr500344e.
  • Maitrani C, Phillips RS. 2013. Substituents effects on activity of kynureninase from Homo sapiens and Pseudomonas fluorescens. Bioorg Med Chem. 21(15):4670–4677. doi: 10.1016/j.bmc.2013.05.039.
  • Manna D, Mondal S, Mugesh G. 2015. Halogen bonding controls the regioselectivity of the deiodination of thyroid hormones and their sulfate analogues. Chemistry. 21(6):2409–2416. doi: 10.1002/chem.201405442.
  • Manna D, Mugesh G. 2012. Regioselective deiodination of thyroxine by iodothyronine deiodinase mimics: an unusual mechanistic pathway involving cooperative chalcogen and halogen bonding. J Am Chem Soc. 134(9):4269–4279. doi: 10.1021/ja210478k.
  • Marcelli T. 2010. Asymmetric organocatalytic Henry reaction. Angew Chem Int Ed Engl. 49(38):6840–6843. doi: 10.1002/anie.201003188.
  • Marchione D, McCoustra MRS. 2016. Non-covalent interaction of benzene with methanol and diethyl ether solid surfaces. Phys Chem Chem Phys. 18(30):20790–20801. doi: 10.1039/c6cp01787h.
  • Miyamura S, Itami K, Yamaguchi J. 2017. Syntheses of biologically active 2-arylcyclopropylamines. Synthesis. 49(06):1131–1149. doi: 10.1055/s-0036-1588390.
  • Nittinger E, Inhester T, Bietz S, Meyder A, Schomburg KT, Lange G, Klein R, Rarey M. 2017. Large-scale analysis of hydrogen bond interaction patterns in protein-ligand interfaces. J Med Chem. 60(10):4245–4257. doi: 10.1021/acs.jmedchem.7b00101.
  • Niwa H, Umehara T. 2017. Structural insight into inhibitors of flavin adenine dinucleotide-dependent lysine demethylases. Epigenetics. 12(5):340–352. doi: 10.1080/15592294.2017.1290032.
  • Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC, Berenguer-Murcia A, Briand LE, Fernandez-Lafuente R. 2019. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol. 9(10):2380–2420. doi: 10.1039/C9CY00415G.
  • Palomo JM, Cabrera Z. 2012. Enzymatic desymmetrization of prochiral molecules. COS. 9(6):791–805. doi: 10.2174/157017912803901628.
  • Politzer P, Lane P, Concha M, Ma Y, Murray J. 2007. An overview of halogen bonding. J Mol Model. 13(2):305–311. doi: 10.1007/s00894-006-0154-7.
  • Reetz MT. 2013. Biocatalysis in organic chemistry and biotechnology: past, present, and future. J Am Chem Soc. 135(34):12480–12496. doi: 10.1021/ja405051f.
  • Ren J, He Y, Chen W, Chen T, Wang G, Wang Z, Xu Z, Lu X, Zhu W, Jiang H, et al. 2014. Thermodynamic and structural characterization of halogen bonding in protein–ligand interactions: a case study of PDE5 and its inhibitors. J Med Chem. 57(8):3588–3593. doi: 10.1021/jm5002315.
  • Schindler S, Huber SM. 2015. Halogen bonds in organic synthesis and organocatalysis. Top Curr Chem. 359:167–203. doi: 10.1007/128_2014_552.
  • Scholfield MR, Vander Zanden CM, Carter M, Ho PS. 2013. Halogen bonding (X-bonding): a biological perspective. Protein Sci. 22(2):139–152. doi: 10.1002/pro.2201.
  • Shah MB, Liu J, Zhang Q, Stout CD, Halpert JR. 2017. Halogen-π interactions in the cytochrome P450 active site: structural insights into human CYP2B6 substrate selectivity. ACS Chem Biol. 12(5):1204–1210. doi: 10.1021/acschembio.7b00056.
  • Shinada NK, De Brevern AG, Schmidtke P. 2019. Halogens in protein-ligand binding mechanism: A structural perspective. J Med Chem. 62(21):9341–9356. doi: 10.1021/acs.jmedchem.8b01453.
  • Sutar RL, Huber SM. 2019. Catalysis of organic reactions through halogen bonding. ACS Catal. 9(10):9622–9639. doi: 10.1021/acscatal.9b02894.
  • Tsai SW. 2016. Enantiopreference of Candida antarctica lipase B toward carboxylic acids: substrate models and enantioselectivity thereof. J Mol Catal B Enzym. 127:98–116. doi: 10.1016/j.molcatb.2014.07.010.
  • Valente S, Rodriguez V, Mercurio C, Vianello P, Saponara B, Cirilli R, Ciossani G, Labella D, Marrocco B, Ruoppolo G, et al. 2015b. Pure diastereomers of a tranylcypromine-based LSD1 inhibitor: enzyme selectivity and in-cell studies. ACS Med Chem Lett. 6(2):173–177. doi: 10.1021/ml500424z.
  • Valente S, Rodriguez V, Mercurio C, Vianello P, Saponara P, Cirilli R, Ciossani G, Labella D, Marrocco B, Monaldi D, et al. 2015a. Pure enantiomers of benzoylamino-tranylcypromine: LSD1 inhibition, gene modulation in human leukemia cells and effects on clonogenic potential of murine promyelocytic blasts. Eur J Med Chem. 94:163–174. doi: 10.1016/j.ejmech.2015.02.060.
  • Velmurugan G, Solomon RV, Senthilnathan D, Venuvanalingam P. 2019. Chapter 28: Noncovalent interactions in biocatalysis – A theoretical perspective. In: Mahmudov KT, Kopylovich MN, Fatima M, da Silva CG, Pombeiro AJL, editors. Noncovalent interactions in catalysis. Burlington House, London: RSC Catal Ser. 37; p. 608–627.
  • Voth AR, Khuu P, Oishi K, Ho PS. 2009. Halogen bonds as orthogonal molecular interactions to hydrogen bonds. Nat Chem. 1(1):74–79. doi: 10.1038/nchem.112.
  • Wang PY, Chen YJ, Wu AC, Lin YS, Kao MF, Chen JR, Ciou JF, Tsai SW. 2009. (R, S)-Azolides as novel substrates for lipase-catalyzed hydrolytic resolution in organic solvents. Adv Synth Catal. 351(14-15):2333–2341. doi: 10.1002/adsc.200900391.
  • Wang XY, Liu JX, Tsai SW. 2019. Lipase-catalyzed hydrolytic resolution of trans-2-(3,4-difluorophenyl)cyclopropyl azolides, a key building block for Ticagrelor synthesis. J Taiwan Inst Chem Eng. 97:112–118. doi: 10.1016/j.jtice.2019.02.026.
  • Wang PF, Neiner A, Lane TR, Zorn KM, Ekins S, Kharasch ED. 2019. Halogen substitution influences ketamine metabolism by cytochrome P450 2B6: in vitro and computational approaches. Mol Pharm. 16(2):898–906. doi: 10.1021/acs.molpharmaceut.8b01214.
  • Wang HH, Zhang Q, Yu X, Liang J, Zhang Y, Jiang Y, Su W. 2023. Application of lipase B from Candida antarctica in the pharmaceutical industry. Ind Eng Chem Res. 62(39):15733–15751. doi: 10.1021/acs.iecr.3c02132.
  • Wheeler SE, Seguin TJ, Guan Y, Doney AC. 2016. Noncovalent interactions in organocatalysis and the prospect of computational catalyst design. Acc Chem Res. 49(5):1061–1069. doi: 10.1021/acs.accounts.6b00096.
  • Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM. 2013. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J Med Chem. 56(4):1363–1388. doi: 10.1021/jm3012068.
  • Xu Z, Yang Z, Liu Y, Lu Y, Chen K, Zhu W. 2014. Halogen bond: its role beyond drug–target binding affinity for drug discovery and development. J Chem Inf Model. 54(1):69–78. doi: 10.1021/ci400539q.
  • Yeh YR, Tzeng YJ, Tsai SW. 2018. Quantitative improvements and insights into CALB-catalyzed resolution of trans- and cis-2-phenylcyclopropyl azolides. ChemistrySelect. 3(19):5353–5360. doi: 10.1002/slct.201800578.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.