34
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Production of xylanase intended to be used in bread-making: laboratory scale and pilot scale studies

, , , , , & show all
Received 08 Dec 2021, Accepted 06 Jun 2024, Published online: 17 Jun 2024

References

  • AACC International Methods. 2000. Approved methods of analysis. St. Paul, MN: The American Association of Cereal Chemists International.
  • Abdelaliem YF, Mahmoud MH, Elkassem NA, Mansour SM, Ramadan MF, Mohdaly A, A, A. 2023. Utilization of agro-industrial biowastes to produce xylanase using Aspergillus niger AUMC 14230: optimization of production parameters. Rend Fis Acc Lincei. 34(3):941–951. doi: 10.1007/s12210-023-01180-2.
  • Abdella A, Segato F, Wilkins MR. 2020. Optimization of process parameters and fermentation strategy for xylanase production in a stirred tank reactor using a mutant Aspergillus nidulans strain. Biotechnol Rep. 26:e00457.
  • Altınel B, Ünal SS. 2017. The effects of amyloglucosidase, glucose oxidase and hemicellulase utilization on the rheological behaviour of dough and quality characteristics of bread. Int J Food Eng. 13(2):20160066.
  • Antecka A, Blatkiewicz M, Boruta T, Górak A, Ledakowicz S. 2019. Comparison of downstream processing methods in purification of highly active laccase. Bioproc Biosyst Eng. 42(10):1635–1645.
  • Archer DB. 2000. Filamentous fungi as microbial cell factories for food use. Curr Opin Biotech. 11(5):478–483.
  • Bettin F, da Rosa LO, Montanari Q, Calloni R, Gaio TA, Malvessi E, da Silveira MM, Dillon AJP. 2011. Growth kinetics, production, and characterization of extracellular laccases from Pleurotus sajor-caju PS-2001. Process Biochem. 46(3):758–764. doi: 10.1016/j.procbio.2010.12.002.
  • Bhardwaj N, Kumar B, Verma P. 2019. A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresour Bioprocess. 6(1):40. doi: 10.1186/s40643-019-0276-2.
  • Bhunia B, Dutta D, Chaudhuri S. 2011. Extracellular alkaline protease from Bacillus licheniformis NCIM‐2042: improving enzyme activity assay and characterization. Eng Life Sci. 11:207–215.
  • Biswas R, Sahai V, Mishra S, Bisaria VS. 2010. Bioprocess strategies for enhanced production of xylanase by Melanocarpus albomyces IITD3A on agro-residual extract. J Biosci Bioeng. 110(6):702–708. doi: 10.1016/j.jbiosc.2010.07.013.
  • Boiardi JL, Ertola RJ. 1985. Rhizobium biomass production in batch and continuous culture with a malt-sprouts medium. MIRCEN J Appl Microb. 1:163–171.
  • Bruckner PL, Habernicht D, Carlson GR, Wichman DM, Talbert LE. 2001. Comparative bread quality of white flour and whole grain flour for hard red spring and winter wheat. Crop Sci. 41(6):1917–1920. doi: 10.2135/cropsci2001.1917.
  • Butt MS, Tahir-Nadeem M, Ahmad Z, Sultan MT. 2008. Xylanases and their applications in baking industry. Food Technol Biotech. 46(1):22–31.
  • Chadha BS, Kaur B, Basotra N, Tsang A, Pandey A. 2019. Thermostable xylanases from thermophilic fungi and bacteria: current perspective. Bioresour Technol. 277:195–203. doi: 10.1016/j.biortech.2019.01.044.
  • Chidambaram JSC, Veerapandian B, Sarwareddy KK, Mani KP, Shanmugam SR, Venkatachalam P. 2019. Studies on solvent precipitation of levan synthesized using Bacillus subtilis MTCC 441. Heliyon. 5(9):e02414. doi: 10.1016/j.heliyon.2019.e02414.
  • Coda R, Varis J, Verni M, Rizzello CG, Katina K. 2017. Improvement of the protein quality of wheat bread through faba bean sourdough addition. LWT–Food Sci Technol. 82:296–302.
  • Cognitive Market Research. 2024. https://www.cognitive­marketresearch.com/xylanase-market-report. Kanhere, M., Report ID: CMR876196, 8th Edition, 250 pages, Last accessed: April 2024.
  • Collins T, Hoyoux A, Dutron A, Georis J, Genot B, Dauvrin T, Arnaut F, Gerday C, Feller G. 2006. Use of glycoside hydrolase family 8 xylanases in baking. J Cereal Sci. 43:79–84.
  • Courtin CW, Delcour JA. 2002. Arabinoxylans and endoxylanases in wheat flour bread-making. J Cereal Sci. 35:225–243.
  • Courtin CW, Gelders GG, Delcour JA. 2001. Use of two endoxylanases with different substrate selectivity for understanding arabinoxylan functionality in wheat flour breadmaking. Cereal Chem. 78(5):564–571. doi: 10.1094/CCHEM.2001.78.5.564.
  • Damen B, Pollet A, Dornez E, Broekaert WF, Van Haesendonck I, Trogh I, Arnaut F, Delcour JA, Courtin CM. 2012. Xylanase-mediated in situ production of arabinoxylan oligosaccharides with prebiotic potential in whole meal breads and breads enriched with arabinoxylan rich materials. Food Chem. 131(1):111–118. doi: 10.1016/j.foodchem.2011.08.043.
  • De Mendiburu F. 2021. Package ‘Agricolae’. R Package, Version. 1:3–5.
  • Desai DI, Iyer BD. 2020. Optimization of medium composition for cellulase-free xylanase production by solid-state fermentation on corn cob waste by Aspergillus niger DX-23. Biomass Conv Bioref. 12(4):1153–1165. doi: 10.1007/s13399-020-00749-3.
  • Dixit PP, Deshmukh AM. 2016. Xylanase from Streptomyces hydroscopicus under solid-state fermentation. Int J Adv Biotechnol Res. 7(1):38–46.
  • Dobrev G, Pishtiyski I, Stanchev V, Mircheva R. 2007. Optimization of nutrient medium containing agricultural wastes for xylanase production by Aspergillus niger B03 using optimal composite experimental design. Bioresour Technol. 98(14):2671–2678. doi: 10.1016/j.biortech.2006.09.022.
  • Farzana T, Mohajan S. 2015. Effect of incorporation of soy flour to wheat flour on nutritional and sensory quality of biscuits fortified with mushroom. Food Sci Nutr. 3(5):363–369. doi: 10.1002/fsn3.228.
  • Ghoshal G, Shivhare US, Banerjee UC. 2016. Thermo-mechanical and micro-structural properties of xylanase containing whole wheat bread. Food Sci Hum Wellness. 5:219–229.
  • Gomes AFS, dos Santos BSL, Fransciscon EG, Baffi MA. 2016. Substract and temperature effect on xylanase production by Aspergillus fumigatus using low cost agricultural waste. Biosci J. 32(4):915–921.
  • Hilhorst R, Dunnewind B, Orsel R, Stegeman P, van Vliet T, Gruppen H, Schols HA. 1999. Baking performance, rheology, and chemical composition of wheat dough and gluten affected by xylanase and oxidative enzymes. J Food Sci. 64(5):808–813.
  • Hujanen MLYY, Linko YY. 1996. Effect of temperature and various nitrogen sources on L (+)-lactic acid production by Lactobacillus casei. Appl Microbiol Biotechnol. 45:307–313.
  • ICC Standard Methods. 2003. International association for cereal science and technology. Vienna, Austria: ICC Standard Methods.
  • Iram A, Cekmecelioglu D, Demirci A. 2022. Optimization of the fermentation parameters to maximize the production of cellulases and xylanases using DDGS as the main feedstock in stirred tank bioreactors. Biocatal Agric Biotechnol. 45:102514.
  • Jaitly AK. 2020. Enhancement of xylanase activity on different cultural conditions of Aspergillus niger in submerged culture. Plant Arch. 20(2):09725210.
  • Jiang ZQ, Li XT, Yang S, Li L, Tan S. 2005. Improvement of the breadmaking quality of wheat flour by the hyperthermophilic xylanase B from Thermotoga maritima. Food Res Int. 38(1):37–43.
  • Jiménez T, Martínez-Anaya MA. 2001. Amylases and hemicellulases in breadmaking. Degradation by-products and potential relationship with functionality. Food Sci Technol Int. 7(1):5–14.
  • Khanahmadi M, Arezi I, Amiri MS, Miranzadeh M. 2018. Bioprocessing of agro-industrial residues for optimization of xylanase production by solid-state fermentation in flask and tray bioreactor. Biocatal Agric Biotechnol. 13:272–282.
  • Lee SH, Lim V, Lee CK. 2018. Newly isolate highly potential xylanase producer strain from various environmental sources. Biocatal Agric Biotechnol. 16:669–676.
  • Leisola M, Jokela J, Pastinen O, Turunen O, Schoemaker H. 2002. Industrial use of enzymes. In: Hannien POO, Atalay M, Mansourian BP, Wojtezak A, Mahfouz SM, Majewski H, Elaine E, Etkin NL, Kirby R, editors. Medical and health science Vol II, Encyclopedia of life support systems (EOLSS). Oxford UK: EOLSS Publishers Co; p. 130–147.
  • Li C, Zhou J, Du G, Chen J, Takahashi S, Liu S. 2020. Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnol Adv. 44:107630. doi: 10.1016/j.biotechadv.2020.107630.
  • Megazyme. 2014. A Modified Somogyi Reducing Sugar Assay for the Measurement of β-Xylanase using Wheat Arabinoxylan as Substrate (pp. 13–14). Megazyme International Ireland, Bray Business Park, Bray, Co. Wicklow, IRELAND [accessed 2021 October]. https://secure.megazyme.com/files/Booklet/T-XAX_DATA.pdf.
  • Michelin M, de Oliveira Mota AM, de Moraes MDLT, da Silva DP, Vicente AA, Teixeira JA. 2013. Influence of volumetric oxygen transfer coefficient (kLa) on xylanases batch production by Aspergillus niger van Tieghem in stirred tank and internal-loop airlift bioreactors. Biochem Eng J. 80:19–26.
  • Min BJ, Park YS, Kang SW, Song YS, Lee JH, Park C, Kim C, W, Kim, S, W. 2007. Statistical optimization of medium components for the production of xylanase by Aspergillus niger KK2 in submerged cultivation. Biotechnol Bioprocess Eng. 12:302–307.
  • Moran-Aguilar MG, Costa-Trigo I, Calderón-Santoyo M, Domínguez JM, Aguilar-Uscanga MG. 2021. Production of cellulases and xylanases in solid-state fermentation by different strains of Aspergillus niger using sugarcane bagasse and brewery spent grain. Biochem Eng J. 172:108060.
  • Morris ON, Kanagaratnam P, Converse V. 1997. Suitability of 30 agricultural products and by-products as nutrient sources for laboratory production of Bacillus thuringiensis subsp. aizawai (HD133). J Invertebr Pathol. 70(2):113–120. doi: 10.1006/jipa.1997.4667.
  • Mudgil D, Barak S, Khatkar BS. 2016. Optimization of bread firmness, specific loaf volume and sensory acceptability of bread with soluble fiber and different water levels. J Cereal Sci. 70:186–191.
  • Namnuch N, Thammasittirong A, Thammasittirong SNR. 2021. Lignocellulose hydrolytic enzymes production by Aspergillus flavus KUB2 using submerged fermentation of sugarcane bagasse waste. Mycol. 12(2):119–127.
  • Ni Q, Ranawana V, Hayes HE, Hayward NJ, Stead D, Raikos V. 2020. Addition of broad bean hull to wheat flour for the development of high fiber bread: effects on physical and nutritional properties. Foods. 9(9):1192. doi: 10.3390/foods9091192.
  • Pandey A, Soccol CR, Rodriguez-Leon JA, Nigam P. 2001. Solid-state fermentation in biotechnology—Fundamentals and applications. New Delhi: Asiatech Publishers; p. 21–31.
  • Primo-Martín C, Wang MW, Lichtendonk WJ, Plijter JJ, Hamer RJ. 2005. An explanation for the combined effect of xylanase–glucose oxidase in dough systems. J Sci Food Agric. 85(7):1186–1196. doi: 10.1002/jsfa.2107.
  • Sargın S, Eltem R, Çoban I. 2018. TR Patent No. TR 2015-16259 B. Yenimahalle, Ankara: Türk Patent ve Marka Kurumu.
  • Senthilkumar SR, Ashokkumar B, Raj KC, Gunasekaran P. 2005. Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design. Bioresour Technol. 96(12):1380–1386. doi: 10.1016/j.biortech.2004.11.005.
  • Shah AR, Madamwar D. 2005. Xylanase production under solid- state fermentation and its characterization by an isolated strain of Aspergillus foetidus in India. World J Microbiol Biotechnol. 21(3):233–243. doi: 10.1007/s11274-004-3622-1.
  • Shah AR, Shah RK, Madamwar D. 2006. Improvement of the quality of whole meal bread by the supplementation of xylanase from Aspergillus foetidus. Bioresour Technol. 97:2047–2053.
  • Silbir S, Dagbagli S, Yegin S, Baysal T, Goksungur Y. 2014. Levan production by Zymomonas mobilis in batch and continuous fermentation systems. Carbohydr Polym. 99:454–461. doi: 10.1016/j.carbpol.2013.08.031.
  • Silbir S, Goksungur Y. 2019. Natural red pigment production by Monascus purpureus in submerged fermentation systems using a food industry waste: brewer’s spent grain. Foods. 8(5):161. doi: 10.3390/foods8050161.
  • Smogyi M. 1952. Notes on sugar determination. J Biol Chem. 195(1):19–23.
  • Soliman HM, Sherief AA, EL-Tanash AB. 2012. Production of xylanase by Aspergillus niger and Trichoderma viride using some agriculture residues. Int J Agric Res. 7(1):46–57.
  • Uday USP, Bandyopadhyay TK, Bhunia B. 2016. Optimization of nutritional and physicochemical requirements on acidic xylanase production from Aspergillus Niger KP874102.1. Mater Today. 3(10):3367–3374.
  • Vogel HJ. 1956. A convenient growth medium for Neurospora (Medium N). Microb Genet Bull. 13:42–43.
  • Wang G, Haringa C, Noorman H, Chu J, Zhuang Y. 2020. Developing a computational framework to advance bioprocess scale-up. Trends Biotechnol. 38(8):846–856. doi: 10.1016/j.tibtech.2020.01.009.
  • Zhang D, Luo Y, Chu S, Zhi Y, Wang B, Zhou P. 2016. Enhancement of cellulase and xylanase production using pH-shift and dissolved oxygen control strategy with Streptomyces griseorubens JSD-1. Appl Biochem Biotech. 178(2):338–352.
  • Zhang S, Zhao S, Shang W, Yan Z, Wu X, Li Y, Chen G, Liu X, Wang L. 2021. Synergistic mechanism of GH11 xylanases with different action modes from Aspergillus niger An76. Biotechnol Biofuels. 14(1):118. doi: 10.1186/s13068-021-01967-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.