881
Views
26
CrossRef citations to date
0
Altmetric
Articles

Heat shock proteins and acute leukemias

, , &
Pages 225-235 | Published online: 04 Sep 2013

References

  • Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995;267:1456–1462.
  • Lindquist S, Craig EA. The heat-shock proteins. Ann Rev Genet 1988;22:631–677.
  • Kojika S, Sugita K, Inukai T, Saito M, Iijima K, Tezuka T, Goi K, Shiraishi K, Mori T, Okazaki T, Kagami K, Ohyama K, Nakazawa S. Mechanisms of glucocorticoid resistance in human leukemic cells: Implication of abnormal 90 and 70 kDa heat shock proteins. Leukemia 1996;10: 994–999.
  • Kim SH, Yeo GS, Lim YS, Kang CD, Kim CM, Chung BS. Suppression of multidrug resistance via inhibition of heat shock factor by quercetin in MDR cells. Exp Mol Med 1998;30:87–92.
  • Konno A, Sato N, Yagihashi A, Torigoe T, Cho JM, Torimoto K, Hara I, Wada Y, Okubo M, Takahashi N, Kikuchi K. Heat-or stress-inducible transformation-associated cell surface antigen on the activated H-ras oncogene-transfected rat fibroblast. Cancer Res 1989;49:6578–6582.
  • Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 1997;17: 5317–5327,
  • Mehlen P, Schulze-Osthoff K, Arrigo AP. Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J Biol Chem 1996;271:16510–16514.
  • Garrido C, Ottavi P, Fromentin A, Hammann A, Arrigo AP, Chauffert B, Mehlen P. HSP27 as a mediator of influence-dependent resistance to cell death induced by anticancer drugs. Cancer Res 1997;57: 2661–2667.
  • Ritossa F. A new puffing pattern induced by heat shock and DNP in Drosophila. Experientia 1962;18:571–573.
  • Tissieres A, Mitchell HK, Tracy UM. Protein synthesis in salivary glands of Drosophila melanogaster; relation to chromosome puffs. J Mol Biol 1974;84:389–398.
  • Pechan PM. Heat shock proteins and cell proliferation. FEBS Lett 1991;280:1–4.
  • Helmbrecht K, Zeise E, Rensing L. Chaperones in cell cycle regulation and mitogenic signal transduction: A review. Cell Prolif 2000;33:341–365.
  • Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell 1998;92:351–366.
  • Hendrick JP, Hartl FU. Molecular chaperone functions of heat shock proteins. Ann Rev Biochem 1993;62:349–384.
  • Fernandes M, O'Brien T, Lis J. Structure and regulation of heat shock gene promoters. In: Morimoto RI, Tissieres A, Georgopoulos C, editors. The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1994. p 375–393.
  • Morimoto RI, Kline MP, Bimston DN, Cotto JJ. The heat-shock response: Regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem 1997;32:17–29.
  • Wu C, Clos J, Giorgi G, Haroun RI. Structure and regulation of heat shock transcription factor. In: Morimoto RI, Tissieres A, Georgopoulos C, editors. The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1994. p 395–416.
  • Morimoto RI, Jurivich DA, Kroeger PE. Regulation of heat shock gene transcription by a family of heat shock factors. In: Morimoto RI, Tissieres A, Georgopoulos C, editors. The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1994. p 417–455.
  • Elia G, De Marco A, Rossi A, Santoro MG. Inhibition of HSP70 expression by calcium ionophore A23187 in human cells. An effect independent of the acquisition of DNA-binding activity by the heat shock transcription factor. J Biol Chem 1996;271:16111–16118.
  • Liu H, Lightfoot R, Stevens JL. Activation of heat shock factor by alkylating agents is triggered by glutathione depletion and oxidation of protein thiols. J Biol Chem 1996;271:4805–4812.
  • Gorman AM, Heavey B, Creagh E, Cotter TG, Samali A. Antioxidant-mediated inhibition of the heat shock response leads to apoptosis. FEBS Lett 1999;445:98–102.
  • Pirkkala L, Alastalo TP, Nykanen P, Seppa L, Sistonen L. Differentiation lineage-specific expression of human heat shock transcription factor 2. FASEB J 1999;13: 1089–1098.
  • Hightower LE. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 1991;66:191–197.
  • Solary E, Droin N, Bettaieb A, Corcos L, Dimanchr-Boitrel MT, Garrido C. Positive and negative regulation of apoptotic pathways by cytotoxic agents in hematological malignancies. Leukemia 2000;14:1833–1849.
  • Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science 1998;281:1312–1316.
  • Schimmer AD. Inhibitor of apoptosis proteins: Translating basic knowledge into clinical practice. Cancer Res 2004;64:7183–7190.
  • Suda T, Takahashi T, Goldstein P, Nagata S. Molecular cloning and expression of Fas ligand, a novel member of the tumor necrosis factor family. Cell 1993;75:1169–1178.
  • Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995;14: 5579–5588.
  • Findley HW, Zhou M. The clinical significance of Fas expression in leukemia: Questions and controversies. Leukemia 1999;13:147–149.
  • Finkel T. Oxygen radicals and signaling. Curr Opin Cell Biol 1998;10:248–253.
  • Lennon SV, Martin SJ, Cotter TG. Dose-dependent induction of apoptosis in human tumor cell lines by widely diverging stimuli. Cell Prolif 1991;24:203–214.
  • Gorman A, McGowan A, Cotter TG. Role of peroxide and super-oxide anion during tumour cell apoptosis. FEBS Lett 1997;404:27–33.
  • Li PF, Dietz R, von Harsdorf R. p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-indendent apoptosis blocked by Bc1-2. EMBO J 1999;18:6027–6036.
  • Slater AF, Nobel CS, Maellaro E, Bustamante J, Kimland M, Orrenius S. Nitrone spin traps and a nitroxide antioxidant inhibit a common pathway of thymocyte apoptosis. Biochem J 1995;306:771–778.
  • Hedley DW, McCulloch EA, Minden MD, Chow S, Curtis J. Anti-leukemic action of buthionine sulfoximine: Evidence for an intrinsic death mechanism based on oxidative stress. Leukemia 1998;12:1545–1552.
  • Rheaume E, Cohen LY, Ulhmann F, Lazure C, Alam A, Hurwitz J, Sekaly RP, Denis F. The large subunit of replication factor C is a substrate for caspase-3 in vitro and is cleaved by a caspase-3-like protease during Fas-mediated apoptosis. EBMO J 1997;16:6346–6354.
  • Bokoch GM. Caspase-mediated activation of PAK2 during apoptosis: Proteolytic kinase activation as a general mechan-ism of apoptotic signal transduction? Cell Death Differ 1998;5:637–645.
  • Widmann C, Gibson S, Johnson GL. Caspase-dependent cleavage of signaling proteins during apoptosis. A turn-off mechanism for anti-apoptotic signals. J Biol Chem 1998;273:7141–7147.
  • Kumar S, Colussi PA. Prodomains-adaptors-oligomeriza-tion: The pursuit of caspase activation in apoptosis. Trends Biochem Sci 1999;24:1–4.
  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998;17: 1675–1687.
  • Kroemer G, Dallaporta B, Resche-Rigon M. The mitochon-drial death/life regulator in apoptosis and necrosis. Ann Rev Physiol 1998;60:619–642.
  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91: 479–489.
  • Lorenzo HK, Susin SA, Penninger J, Kroemer G. Apoptosis inducing factor (AIF): A phylogenetically old, caspase-independent effector of cell death. Cell Death Differ 1999;6:516–524.
  • Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bc1-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990;348: 334–336.
  • Itoh N, Tsujimoto Y, Nagata S. Effect of bc1-2 on fas antigen-mediated cell death. J Immunol 1993;151: 621–627,
  • Robertson JD, Datta K, Kehrer JP. Bc1-xL overexpression restricts heat-induced apoptosis and influences hsp70, bc1-2, and Bax protein levels in FL5.12 cells. Biochem Biophys Res Commun 1997;241: 164–168.
  • Reed JC. Bc1-2 family proteins. Oncogene 1998; 17:3225–3236.
  • Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999;13: 1899–1911.
  • Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C, Archimbaud E, Magaud JP, Guyotat D. High expression of bc1-2 protein in acute myeloid leukaemia cells is associated with poor response to chemotherapy. Blood 1993;81:3091–3096.
  • Meijerink JP, Mensink EJ, Wang K, Sedlak TW, Sloetjes AW, de Witte T, Waksman G, Korsmeyer SJ. Hematopoietic malignancies demonstrate los-of-function mutations of Bax. Blood 1998;91:2991–2997.
  • Strasser A, Harris AW, Bath ML, Cory S. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bc1-2. Nature 1990;348:331–333.
  • Kroemer G, Reed JC. Mitochondrial control of cell death. Nature Med 2000;6:513–519.
  • Polla BS, Kantengwa S, Francois D, Salvioli S, Franceschi C, Marsac C, Cossarizza A. Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proc Natl Acad Sci USA 1996;93:6458–6463.
  • Kitada S, Takayama S, De Riel K, Tanaka S, Reed JC. Reversal of chemoresistance of lymphoma cells by antisense-mediated reduction of bc1-2-gene expression. Antisense Res Dev 1994;4: 71–79.
  • Jansen B, Schlagbauer-Wald H, Brown BD, Bryan RN, Van Elsas A, Müller M, Wolff K, Eichler HG, Pehamberger H. Bc1-2 anti-sense therapy chemosensitizes human melanoma in SCID mice. Nature Med 1998;4:232–234.
  • Downward J. Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 1998;10:262–267.
  • Cirino G, Fiorucci S, Sessa WC. Endothelial nitric oxide synthase: The Cinderella of inflammation? Trends Pharma-col Sci 2003;24:91–95.
  • Kolb JP. Mechanisms involved in the pro- and anti-apoptotic role of NO in human leukemia. Leukemia 2000; 14:1685–1694.
  • Mearow KM, Dodge ME, Rahimtula M, Yegappan C. Stress-mediated signalling in PC12 cells-the role of the small heat shock protein, Hsp27, and Akt in protecting cells from heat stress and nerve growth factor withdrawal. J Neurochem 2002;83:452–462.
  • Fujita N, Sato S, Ishida A, Tsuoro T. Involvement of Hsp90 in signaling and stability of 3-phosphoinositol-dependent kinase-1. J Biol Chem 2002;277:10346–10353.
  • Sreedhar AS, Csermely P. Heat shock proteins in the regulation of apoptosis: New strategies in tumor therapy. A comprehensive review. Pharm Ther 2004;101:227–257.
  • Creagh EM, Sheehan D, Cotter TG. Heat shock proteins - modulators of apoptosis in tumour cells. Leukemia 2000;14:1161–1173.
  • Xanthoudakis S, Roy S, Rasper D, Hennesay T, Aubin Y, Cassady R, Tawa P, Ruel R, Rosen A, Nicholson DW. Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J 1999;18:2049–2056.
  • Galea-Lauri J, Richardson AJ, Latchman DS, Katz DR. Increased heat shock protein 90 (hsp90) expression leads to increased apoptosis in the monoblastoid cell line U937 following induction with TNF-alpha and cycloheximide: A possible role in immunopathology. J Immunol 1996;157:4109–4118.
  • Jaattela M, Wissing D, Kokholm K, Kallunki T, Egeblad M. Hsp70 exerts is anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 1998;17: 6124–6134.
  • Stuart JK, Myszka DG, Joss L, Mitchell RS, McDonald SM, Xie Z, Takayama S, Reed JC, Ely KR. Characterization of interactions between the anti-apoptotic protein BAG-1 and Hsc70 molecalar chaperones. J Biol Chem 1998;273: 22506–22514.
  • Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E. H5P27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J 1999;13:2061–2070.
  • Mckenna SL, Padua RA. Multidrug resistance in leukaemia. Br J Haematol 1997;96:659–674.
  • Samali A, Cotter TG. Heat shock proteins increase resistance to apoptosis. Exp Cell Res 1996;223:163–170.
  • Creagh EM, Cotter TG. Selective protection by hsp70 against cytotoxic drug-, but not Fas-induced T-cell apoptosis. Immunology 1999;97:36–44.
  • Izquierdo MA, Shoemaker RH, Flens MJ, Scheffer GL, Wu L, Prather TR, Scheper RG. Overlapping phenotypes of multidrug resistance among panels of human cancer-cell lines. Int J Cancer 1996;65:230–237.
  • Kasimir-Bauer S, Ottinger H, Meusers P, Beelen DW, Brittinger G, Seeber S, Scheulen ME. In acute myeloid leukemia, coexpression of at least two proteins, including P-glycoprotein, the multidrug resistance-related protein, bc1-2, mutant p53, and heat-shock protein 27, is predictive of the response to induction chemotherapy. Exp Hematol 1998;26: 1111–1117.
  • Kasimir-Bauer S, Beelen D, Flasshove M, Noppeney R, Seeber S, Scheulen ME. Impact of the expression of P glycoprotein, the multidrug resistance-related protein, bc1-2, mutant p53, and heat shock protein 27 on response to induction therapy and long-term survival in patients with de novo acute myeloid leukemia. Exp Hematol 2002;30: 1302–1308.
  • Thomas X, Campos L, Mounier C, Cornillon J, Piselli S, Viallet A, Guyotat D. Expression of heat-shock proteins (HSPs) is associated with major adverse prognostic factors in acute myeloid leukemia (AML). Blood 2003;102\(suppl. 1): 611a.
  • Yufu Y, Nishimura J, Nawata H. High constitutive expression of heat shock protein 90 alpha in acute leukemia cells. Leuk Res 1992;16: 597–605.
  • Zylicz M, King FW, Wawrzynow A. Hsp70 interactions with the p53 tumour suppressor protein. EMBO J 2001;20: 4634–4638.
  • Jolly C, Morimoto RI. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Res Inst 2000;92:1564–1572.
  • Brozovic A, Simaga S, Osmak M. Induction of heat shock protein 70 in drug-resistant cells by anticancer drugs and hyperthermia. Neoplasma 2001;48: 99–103.
  • Xiao K, Liu W, Qu S, Sun H, Tang J. Study of heat shock protein HSP90 alpha, HSP70, H5P27 mRNA expression in human acute leukemia cells. J Tongji Med Univ 1996;16: 212–216.
  • Madsen PS, Hockland P, Clausen N, Ellegaard J, Hockland M. Differential expression levels of the heat shock protein 27 isoforms in pediatric normal, nonleukemic and common acute lymphoblastic leukemia B-cell precursors. Blood 1995;85: 510–521.
  • Campos L, Chautard S, Viallet A, Guyotat D. Expression of heat-shock proteins in acute leukaemia cells. Haematologica 1999;84:13.
  • Chant ID, Rose PE, Morris AG. Analysis of heat-shock protein expression in myeloid leukaemia cells by flow cytometry. Br J Haematol 1995;90:163–168.
  • Emura I, Chou T, Imai Y, Kakihar T, Ishiguro T, Naito M, Yoshizawa H, Arakawa M. Overexpression of heat shock protein 60 and the survival of blast in acute myeloid leukemia after induction therapy. Leukemia 2000;14:1529–1530.
  • Chant ID, Rose PE, Morris AG. Susceptibility of AML cells to in vitro apoptosis correlates with heat shock protein 70 (hsp70) expression. Br J Haematol 1996;93: 898–902.
  • Huang S, Ingber DE. Shape-dependent control of cell growth, differentiation, and apoptosis: Switching between attractors in cell regulatory networks. Exp Cell Res 2000;261:91–103.
  • Itoh N, Komatsuda A, Wakui H, Miura AB, Tashima Y. Mammalian Hsp60 is a major target for the immunosup-pressant mizoribine. J Biol Chem 1999;274: 35147–35151.
  • Nadler SG, Tepper MA, Schacter B, Mazzucco CE. Interaction of the immunosuppressant deoxyspergualin with a member of the Hsp70 family of heat shock proteins. Science 1992;258:484–486.
  • Whetstone H, Lingwood C. 3/sulfogalactolipid binding specifically inhibits Hsp70 ATPase activity in vitro. Biochem-istry 2003;42:1611–1617.
  • Wadhwa R, Sugihara T, Yoshida A, Nomura H, Reddel RR, Simpson R, Maruta H, Kaul SC. Selective toxicity of MKT-077 to cancer cells is mediated by its binding to the hsp70 family protein mot-2 and reactivation of p53 function. Cancer Res 2000;60:688–6821.
  • Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM. Inhibition of HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: Essentiel role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 1994;91: 8324–8328.
  • Schulte TW, Neckers LM. The benzoquinone ansamycin 17-allyamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 1998;42:273–279.
  • Soga S, Kozawa T, Narumi H, Akinaga S, Irie K, Matsumoto K, Sharma SV, Nakano H, Mizukami T, Hara M. Radicicol leads to selective depletion of Raf kinase and disrupts K-Ras-activated aberrant signaling pathway. J Biol Chem 1998;273:822–828.
  • Agatsuma T, Ogawa H, Akasaka K, Asai A, Yamashita Y, Mizukami T, Akinaga S, Saitoh Y. Halohydrin and oxime derivatives of radicicol: Synthesis and antitumor activities. Bioorg Med Chem 2002;10:3445–3454.
  • Hargreaves R, David CL, Whitesell L, Skibo EB. Design of quinolenedione-based geldanamycin analogues. Bioorg Med Chem Lett 2003;13:3075–3078.
  • Chiosis G, Lucas B, Shtil A, Huezo H, Rosen N. Development of a purine-scaffold novel class of Hsp90 binders that inhibit the proliferation of cancer cells and induce the degradation of Her2 tyrosine kinase. Bioorg Med Chem 2002;10: 3555–3564.
  • Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp9A inhibitors. Nature 2003;425: 407–410.
  • Hostein I, Robertson D, DiStefano F, Workman P, Clarke PA. Inhibition of signal transduction by the Hsp90 inhibitor 17-allyamino-17-demethoxygeldanamycin results in cytosta-sis and apoptosis. Cancer Res 2001;61: 4003–4009.
  • Basso AD, Solit DB, Chiosis G, Gini B, Tsichlis P, Rosen N. Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem 2002;277: 39858–39866.
  • Munster PN, Marchion DC, Basso AD, Rosen N. Degradation of HER2 by ansamycins induces growth arrest and apoptosis in cells with HER2 overexpression via a HER3, phosphatidylinositol 31-kinase-AKT-dependent pathway. Cancer Res 2002;62:3132–3137.
  • Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machin-ery. Exp Biol Med 2003;228:111–133.
  • Sreedhar AS, Pardhasaradhi BV, Khar A, Srinivas UK. A cross talk between cellular signaling and cellular redox state during heat-induced apoptosis in a rat histiocytoma. Free Radic Biol Med 2002;32:221–227.
  • Yao Q, Nishiuchi R, Li Q, Kumar AR, Hudson WA, Kersey JH. FLT3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction-associated kinases. Chin Cancer Res 2003;9:4483–4493.
  • Blagosklonny MV. Hsp-90-associated oncoproteins: Multiple targets of geldamycin and its analogs. Leukemia 2002;16:455–462.
  • Takimoto CH, Diggikar S. Heat shock protein and proteasome targeting agents. Hematol Oncol Chin N Am 2002;16:1269–1285.
  • Goetz MP, Toft DO, Ames MM, Erlichman C. The Hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol 2003;14:1169–1176.
  • Supko JG, Hickman RL,, Greyer MR, Malspeis L. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 1995;36:305–315.
  • Neckers L. Heat shock protein 90 inhibition by 17-allylamino-17-demethoxygeldanamycin: A novel therapeutic approach for treating hormone-refractory prostate cancer. Chin Cancer Res 2002;8:962–966.
  • Goetz M, Toft D, Reid J. A phase I trial of 17-allyl-amino-geldanamycin (17-AAG) in patients with advanced cancer. Eur J Cancer 2002;38\(Suppl. 7):54.
  • Banerji U, O'Donnell A, Scurr M. A pharmacokinetically (PK) - pharmacodynamically (PD) driven phase I trial of the HSP90 molecular chaperone inhibitor 17-allylamino-17-de-methoxygeldamycin (17-AAG). Proc Am Assoc Cancer Res 2002;43:272.
  • Munster PN, Tong W, Schwartz L, Larson S, Kenneson K, Dela Cruz A, Rosen N, Scher H. Phase I trial of 17-(allylamino)-17-demethoxygeldamycin (17-AAG) in patients (Pts) with advanced solid malignancies. Proc Am Soc Clin Oncol 2001;20:83a.
  • Agnew EB, Wilson RH, Morrison G. Clinical pharmacoki-netics of 17-(allylamino)-17-demethoxygeldamycin and the active metabolite 17-(amino)-17-demethoxygeldamycin given as a one-hour infusion daily for 5 days. Proc Am Assoc Cancer Res 2002;43: 272.
  • Campos L, Flandrin P, Olaru D, Guyotat D. HSP90 inhibitors induce apoptosis in human leukemia cells. Blood 2004;104\(Suppl. 1):30a.
  • Blagosklonny MV, Fojo T, Bhalla KN, Kim JS, Trepel JB, Figg WD, Rivera Y, Neckers LM. The Hsp90 inhibitor geldanamycin selectively sensitizes Bcr-Abl-expressing leu-kemia cells to cytotoxic chemotherapy. Leukemia 2001;15:1537–1543.
  • Varticovski L, Gandhi BB, Neckers L, Harris CC, Robles Al. Hsp90 inhibitors reverse resistance to doxorubicin in p53-null and mutant cells. Blood 2003;102\(Suppl. 1):863a.
  • Rahmani M, Yu C, Dai Y, Reese E, Ahmed W, Dent P, Grant S. Coadministration of the heat shock protein 90 antagonist 17-allylamino-17-demethoxygeldanamycin with suberoylani-lide hydroxamic acid or sodium butyrate synergistically induces apoptosis in human leukemia cells. Cancer Res 2003;63: 8420–8427.
  • Kuduk SD, Harris TC, Zheng FF, Sepp-Lorenzino L, Ouerfelli Q, Rosen N, Danishefsky SJ. Synthesis and evaluation of geldanamycin-testosterone hybrids. Bioorg Med Chem Lett 2000;10:1303–1306.
  • Tissing WJE, Meijerink JPP, den Boer ML, Pieters R. Molecular determinants of glucocorticoid sensitivity and resistance in acute lymphoblastic leukemia. Leukemia 2003;17:17–25.
  • Chiosis G, Rosen N, Sepp-Lorenzino L. LY294002-geldanamycin heterodimers as selective inhibitors of the PI3K and PI3K-related family. Bioorg Med Chem Lett 2001;11: 909–913.
  • Multhoff G. Activation of natural killer cells by heat shock protein 70. Int J Hypertherm 2002;18:576–585.
  • Hickman-Miller H, Hildebrand WH. The immune response under stress: The role of HSP-derived peptides. Trends Immunol. 2004;25:427–433.
  • Baker-LePain JC, Reed RC, Nicchitta CV. ISO: A critical evaluation of the role of peptides in heat shock/chaperone protein-mediated tumor rejection. Curr Opin Immunol 2003;15:89–94.
  • Sato K, Torimoto Y, Tamura Y, Shindo M, Shinzaki H, Hirai K, Kohgo Y. Immunotherapy using heat-shock protein preparations of leukemia cells after syngeneic bone marrow transplantation in mice. Blood 2001;98:1852–1857.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.