310
Views
11
CrossRef citations to date
0
Altmetric
Hemopoiesis

Protein palmitoylation in signal transduction of hematopoietic cells

&
Pages 511-519 | Published online: 04 Sep 2013

References

  • Towler DA, Gordon JI, Adams SP, Glaser L. The biology and enzymology of eukaryotic protein acylation. Annu Rev Biochem 1988;57:69–99.
  • Kleuss C, Krause E. Galpha(s) is palmitoylated at the N-terminal glycine. Embo J 2003;22:826–832.
  • Pepinsky RB, Zeng C, Wen D, Rayhorn P, Baker DP, Williams K13, Bixler SA, Ambrose CM, Garber EA, Miatkowski K, Taylor FR, Wang EA, Galdes A. Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem 1998;273:14037–14045.
  • Bijlmakers MJ, Marsh M. The on-off story of protein palmitoylation. Trends Cell Biol 2003;13:32–42.
  • Mumby SM. Reversible palmitoylation of signaling proteins. Curr Opin Cell Biol 1997;9:148–154.
  • Resh MD. Fatty acylation of proteins: New insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1999;1451:1–16.
  • Berthiaume L, Resh MD. Biochemical characterization of a palmitoyl acyltransferase activity that palmitoylates myristoyla-ted proteins. J Biol Chem 1995;270:22399–22405.
  • Dunphy JT, Greentree WK, Manahan CL, Linder ME. G-protein palmitoyltransferase activity is enriched in plasma membranes. J Biol Chem 1996;271:7154–7159.
  • Das AK, Dasgupta B, Bhattacharya R, Basu J. Purification and biochemical characterization of a protein-palmitoyl acyltrans-ferase from human erythrocytes. J Biol Chem 1997;272: 11021–11025.
  • Ueno K, Suzuki Y. p260/270 expressed in embryonic abdominal leg cells of Bombyx mori can transfer palmitate to peptides. J Biol Chem 1997;272:13519–13526.
  • Liu L, Dudler T, Gelb H. Purification of a protein palmitoyl-transferase that acts on H-Ras protein and on a C-terminal N-Ras peptide. J Biol Chem 1996;271:23269–23276.
  • Lobo S, Greentree WK, Linder ME, Deschenes RJ. Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae. J Biol Chem 2002;277:41268–41273.
  • Roth AF, Feng Y, Chen L, Davis NG. The yeast DHHC cysteine-rich domain protein Akrlp is a palmitoyl transferase. J Cell Biol 2002;159:23–28.
  • Dietrich LE, Ungermann C. On the mechanism of protein palmitoylation. EMBO Rep 2004;5:1053–1057.
  • Smotrys JE, Linder ME. Palmitoylation of intracellular signaling proteins: Regulation and function. Annu Rev Biochem 2004;73:559–587.
  • Keller CA, Yuan X, Panzanelli P, Martin ML, Alldred M, Sassoe-Pognetto M, Luscher B. The gamma2 subunit of GABA(A) receptors is a substrate for palmitoylation by GODZ. J Neurosci 2004;24: 5881–5891.
  • Huang K, Yanai A, Kang R, Arstikaitis P, Singaraja RR, Metzler M, Mullard A, Haigh B, Gauthier-Campbell C, Gutekunst CA, Hayden MR, El-Husseini A. Huntingtin-interacting protein hip14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins. Neuron 2004;44: 977–986.
  • Ducker CE, Stealer EM, French KJ, Upson JJ, Smith CD. Huntingtin interacting protein 14 is an oncogenic human protein: Palmitoyl acyltransferase. Oncogene 2004;23: 9230–9237.
  • Fukata M, Fukata Y, Adesnik H, Nicoll RA, Bredt DS. Identification of PSD-95 palmitoylating Enzymes. Neuron 2004;44: 987–996.
  • Linder ME, Deschenes RJ. Model organisms lead the way to protein palmitoyltransferases. J Cell Sci 2004;117:521–526.
  • Duncan JA, Gilman AG. Autoacylation of G protein alpha subunits. J Biol Chem 1996;271:23594–23600.
  • Corvi MM, Soltys CL, Berthiaume LG. Regulation of mitochondrial carbamoyl-phosphate synthetase 1 activity by active site fatty acylation. J Biol Chem 2001;276: 45704–45712.
  • Wolff J, Zambito AM, Britto PJ, Knipling L. Autopalmitoyla-tion of tubulin. Protein Sci 2000;9:1357–1364.
  • Faergeman NJ, Knudsen J. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J 1997;323(Pt 1):1–12.
  • Soyombo AA, Yi W, Hofmann SL. Structure of the human palmitoyl-protein thioesterase-2 gene (PPT2) in the major histocompatibility complex on chromosome 6p21.3. Geno-mics 1999;56: 208–216.
  • Soyombo AA, Hofmann SL. Molecular cloning and expression of palmitoyl-protein thioesterase 2 (PPT2), a homolog of lysosomal palmitoyl-protein thioesterase with a distinct substrate specificity. J Biol Chem 1997;272:27456–27463.
  • Verkruyse LA, Hofmann SL. Lysosomal targeting of palmitoyl-protein thioesterase. J Biol Chem 1996;271:15831–15836.
  • Devedjiev Y, Dauter Z, Kuznetsov SR, Jones TL, Derewenda ZS. Crystal structure of the human acyl protein thioesterase I from a single X-ray data set to 1.5 A. Struct Fold Des 2000;8: 1137–1146.
  • Duncan JA, Gilman AG. A cytoplasmic acyl-protein thio-esterase that removes palmitate from G protein alpha subunits and p21 (RAS). J Biol Chem 1998;273:15830–15837.
  • Linder ME, Deschenes RJ. New insights into the mechanisms of protein palmitoylation. Biochemistry 2003;42:4311–4320.
  • Vesa J, Hellsten E, Verkruyse LA, Camp LA, Rapola J, Santavuori P, Hofmann SL, Peltonen L. Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature 1995;376:584–587.
  • Yeh DC, Duncan JA, Yamashita S, Michel T. Depalmitoyla-tion of endothelial nitric-oxide synthase by acyl-protein thioesterase 1 is potentiated by Ca(2+)-calmodulin. J Biol Chem 1999;274:33148–33154.
  • Duncan JA, Gilman AG. Characterization of Saccharomyces cerevisiae Acyl-protein thioesterase 1, the enzyme responsible for g protein alpha subunit deacylation in vivo. J Biol Chem 2002;277:31740–31752.
  • Fragoso R, Ren D, Zhang X, Su MW, Burakoff SJ, Jin YJ. Lipid raft distribution of CD4 depends on its palmitoylation and association with Lck, and evidence for CD4-induced lipid raft aggregation as an additional mechanism to enhance CD3 signaling. J Immunol 2003;170:913–921.
  • Arcaro A, Gregoire C, Bakker TR, Baldi L, Jordan M, Goffui L, Boucheron N, Wurm F, van der Merwe PA, Malissen B, Luescher IF. CD8beta endows CD8 with efficient coreceptor function by coupling T cell receptor/CD3 to raft-associated CD8/p56(lck) complexes. J Exp Med 2001;194:1485–1495.
  • Arcaro A, Gregoire C, Boucheron N, Stotz S, Palmer E, Malissen B, Luescher IF. Essential role of CD8 palmitoylation in CD8 coreceptor function. J Immunol 2000;165: 2068–2076.
  • Sefton BM, Buss JE. The covalent modification of eukaryotic proteins with lipid. J Cell Biol 1987;104:1449–1453.
  • Paige LA, Nadler MJ, Harrison ML, Cassady JM, Geahlen RL. Reversible palmitoylation of the protein-tyrosine kinase p561ck. J Biol Chem 1993;268: 8669–8674.
  • Koegl M, Zlatkine P, Ley SC, Courtneidge SA, Magee Al. Palmitoylation of multiple Src-family kinases at a homologous N-terminal motif. Biochem J 1994;303(Pt 3):749–753.
  • Shenoy-Scaria AM, Dietzen DJ, Kwong J, Link DC, Lublin DM. Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae. J Cell Biol 1994;126: 353–363.
  • Timson Gauen LK, Linder ME, Shaw AS. Multiple features of the p59fyn src homology 4 domain define a motif for immune-receptor tyrosine-based activation motif (ITAM) binding and for plasma membrane localization. J Cell Biol 1996;133: 1007–1015.
  • van't Hof W, Resh MD. Dual fatty acylation of p59(Fyn) is required for association with the T cell receptor zeta chain through phosphotyrosine-Src homology domain-2 inter-actions. J Cell Biol 1999;145:377–389.
  • Kabouridis PS, Magee Al, Ley SC. 5-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes. Embo J 1997;16: 4983–4998.
  • Zhang W, Trible RP, Samelson LE. LAT palmitoylation: Its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 1998;9:239–246.
  • Zhang W, Irvin BJ, Trible RP, Abraham RT, Samelson LE. Functional analysis of LAT in TCR-mediated signaling pathways using a LAT-deficient Jurkat cell line. Int Immunol 1999;11:943–950.
  • Webb Y, Hermida-Matsumoto L, Resh MD. Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J Biol Chem 2000;275:261–270.
  • Hawash IY, Hu XE, Adal A, Cassady JM, Geahlen RL, Harrison ML. The oxygen-substituted palmitic acid analogue, 13-oxypalmitic acid, inhibits Lck localization to lipid rafts and T cell signaling. Biochim Biophys Acta 2002;1589:140–150.
  • Melkonian KA, Ostermeyer AG, Chen JZ, Roth MG, Brown DA. Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J Biol Chem 1999;274:3910–3917.
  • Zurier RB. Fatty acids, inflammation and immune responses. Prostaglandins Leukot Essent Fatty Acids 1993;48:57–62.
  • Cleland LG, French JK, Betts WH, Murphy GA, Elliott MJ. Clinical and biochemical effects of dietary fish oil supplements in rheumatoid arthritis. J Rheumatol 1988;15:1471–1475.
  • Kremer JM, Jubiz W, Michalek A, Rynes RI, Bartholomew LE, Bigaouette J, Timchalk M, Beeler D, Lininger L. Fish-oil fatty acid supplementation in active rheumatoid arthritis. A double-blinded, controlled, crossover study. Ann Intern Med 1987; 106:497–503.
  • Belluzzi A, Brignola C, Campieri M, Pera A, Boschi S, Miglioli M. Effect of an enteric-coated fish-oil preparation on relapses in Crohn's disease. N Engl J Med 1996;334:1557–1560.
  • Janeway CA, Travers P, Walport M, Shlomchik M. Immuno-biology. New York: Garland Publishing; 2001.
  • Cherukuri A, Carter RH, Brooks S, Bornmann W, Finn R, Dowd CS, Pierce SK. B cell signaling is regulated by induced palmitoylation of CD81. J Biol Chem 2004;279: 31973–31982.
  • Clark KL, Oelke A, Johnson ME, Eilert KD, Simpson PC, Todd SC. CD81 associates with 14-3-3 in a redox-regulated palmitoylation-dependent manner. J Biol Chem 2004;279: 19401–19406.
  • Muszbek L, Haramura G, Cluette-Brown JE, Van Cott EM, Laposata M. The pool of fatty acids covalently bound to platelet proteins by thioester linkages can be altered by exogenously supplied fatty acids. Lipids 1999;34:5331–S337.
  • Hallak H, Muszbek L, Laposata M, Belmonte E, Brass LF, Manning DR. Covalent binding of arachidonate to G protein alpha subunits of human platelets. J Biol Chem 1994;269: 4713–4716.
  • Schick PK, Walker J. The acylation of megakaryocyte proteins: Glycoprotein 1X is primarily myristoylated while glycoprotein lb is palmitoylated. Blood 1996;87:1377–1384.
  • Cierniewski CS, Krzeslowska J, Pawlowska Z, Witas H, Meyer M. Palmitylation of the glycoprotein Ilb-IIIa complex in human blood platelets. J Biol Chem 1989;264:12158–12164.
  • Muszbek L, Laposata M. Glycoprotein lb and glycoprotein 1X in human platelets are acylated with palmitic acid through thioester linkages. J Biol Chem 1989;264:9716–9719.
  • Mollner S, Beck K, Pfeuffer T. Acylation of adenylyl cyclase catalyst is important for enzymic activity. FEBS Lett 1995;371:241–244.
  • Fujimoto T, Stroud E, Whatley RE, Prescott SM, Muszbek L, Laposata M, McEver RP. P-selectin is acylated with palmitic acid and stearic acid at cysteine 766 through a thioester linkage. J Biol Chem 1993;268: 11394–11400.
  • Wedegaertner PB, Bourne HR. Activation and depalmitoyl-ation of Gs alpha. Cell 1994;77:1063–1070.
  • Mumby SM, Kleuss C, Gilman AG. Receptor regulation of G-protein palmitoylation. Proc Natl Acad Sci USA 1994;91: 2800–2804.
  • Chen CA, Manning DR. Regulation of Galpha i palmitoyl-ation by activation of the 5-hydroxytryptamine-1A receptor. J Biol Chem 2000;275:23516–23522.
  • Bhamre S, Wang HY, Friedman E. Serotonin-mediated palmitoylation and depalmitoylation of G alpha proteins in rat brain cortical membranes. J Pharmacol Exp Ther 1998;286:1482–1489 .
  • Chen CA, Manning DR. Regulation of G proteins by covalent modification. Oncogene 2001;20:1643–1652.
  • Fishburn CS, Pollitt SK, Bourne HR. Localization of a peripheral membrane protein: Gbetagamma targets Galpha(Z). Proc Natl Acad Sci USA 2000;97:1085–1090.
  • Morales J, Fishburn CS, Wilson PT, Bourne HR. Plasma membrane localization of G alpha z requires two signals. Mol Biol Cell 1998;9:1–14.
  • Fishburn CS, Herzmark P, Morales J, Bourne HR. Gbeta-gamma and palmitate target newly synthesized Galphaz to the plasma membrane. J Biol Chem 1999;274:18793–18800.
  • Huang C, Duncan JA, Gilman AG, Mumby SM. Persistent membrane association of activated and depalmitoylated G protein alpha subunits. Proc Natl Acad Sci USA 1999;96:412–417.
  • Chang WJ, Ying YS, Rothberg KG, Hooper NM, Turner AJ, Gambliel HA, De Gunzburg J, Mumby SM, Gilman AG, Anderson RG. Purification and characterization of smooth muscle cell caveolae. J Cell Biol 1994;126:127–138.
  • Waheed AA, Jones TL. Hsp90 interactions and acylation target the G protein Galpha 12 but not Galpha 13 to lipid rafts. J Biol Chem 2002;277:32409–32412.
  • Song KS, Sargiacomo M, Galbiati F, Parenti M, Lisanti MP. Targeting of a G alpha subunit (Gil alpha) and c-Src tyrosine kinase to caveolae membranes: Clarifying the role of N-myristoylation. Cell Mol Biol (Noisy-le-grand) 1997;43: 293–303.
  • Galbiati F, Volonte D, Meani D, Milligan G, Lublin DM, Lisanti MP, Parenti M. The dually acylated NH2-terminal domain of Gil alpha is sufficient to target a green fluorescent protein reporter to caveolin-enriched plasma membrane domains. Palmitoylation of caveolin-1 is required for the recognition of dually acylated G-protein alpha subunits in vivo. J Biol Chem 1999;274: 5843–5850.
  • Moffett S, Brown DA, Linder ME. Lipid-dependent targeting of G proteins into rafts. J Biol Chem 2000; 275:2191–2198.
  • Wedegaertner PB, Chu DH, Wilson PT, Levis MJ, Bourne HR. Palmitoylation is required for signaling functions and membrane attachment of Gq alpha and Gs alpha. J Biol Chem 1993;268:25001–25008.
  • Edgerton MD, Chabert C, Chollet A, Arkinstall S. Palmitoyla-tion but not the extreme amino-terminus of Gq alpha is required for coupling to the NK2 receptor. FEBS Lett 1994;354:195–199.
  • Bri T, Backlund PS, Jr., Jones TL, Wedegaertner PB, Bourne HR. Reciprocal regulation of Gs alpha by palmitate and the beta gamma subunit. Proc Natl Acad Sci USA 1996;93:14592–14597.
  • Tu Y, Wang J, Ross EM. Inhibition of brain Gz GAP and other RGS proteins by palmitoylation of G protein alpha subunits. Science 1997;278:1132–1135.
  • Tu Y, Popov S, Slaughter C, Ross EM. Palmitoylation of a conserved cysteine in the regulator of G protein signaling (RGS) domain modulates the GTPase-activating activity of RGS4 and RGS10. J Biol Chem 1999;274:38260–38267.
  • Tu Y, Woodson J, Ross EM. Binding of regulator of G protein signaling (RGS) proteins to phospholipid bilayers. Contribution of location and/or orientation to GTPase-activating protein activity. J Biol Chem 2001;276:20160–20166.
  • Savage B, Saldivar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996;84:289–297.
  • Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate—receptor interactions in platelet thrombus formation under flow. Cell 1998;94:657–666.
  • Shrimpton CN, Borthakur G, Larrucea S, Cruz MA, Dong JF, Lopez JA. Localization of the adhesion receptor glycoprotein Ib-IX-V complex to lipid rafts is required for platelet adhesion and activation. J Exp Med 2002;196:1057–1066.
  • Kwiatkowska K, Frey J, Sobota A. Phosphorylation of Fcgamma RIIA is required for the receptor-induced actin rearrangement and capping: The role of membrane rafts. J Cell Sci 2003;116:537–550.
  • Honda Z, Suzuki T, Kono H, Okada M, Yamamoto T, Ra C, Morita Y, Yamamoto K. Sequential requirements of the N-terminal palmitoylation site and 5H2 domain of Src family kinases in the initiation and progression of FcepsilonRI signaling. Mol Cell Biol 200020:1759-1771.
  • Christgau S, Aanstoot HJ, Schierbeck H, Begley K, Tullin S, Hejnaes K, Baekkeskov S. Membrane anchoring of the autoantigen GAD65 to microvesicles in pancreatic beta-cells by palmitoylation in the NH2-terminal domain. J Cell Biol 1992;118: 309–320.
  • Salaun C, Gould GW, Chamberlain LH. The SNARE Proteins SNAP-25 and SNAP-23 display different affinities for lipid rafts in PC12 cells: Regulation by distinct cysteine-rich domains. J Biol Chem 2005;280: 1236–1240.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.