67
Views
4
CrossRef citations to date
0
Altmetric
Articles

Modulation of Platelet Aggregation Response by Factors Released from Polymorphonuclear Leukocytes

&
Pages 39-53 | Received 12 Aug 1996, Published online: 13 Jul 2016

References

  • Henry, R. L. (1965). Leukocytes and thrombosis. Thromb Diath Haemorrh, 13, 35–46.
  • Marcus, A. J. (1983). Recent progress in the role of platelets in occlusive vascular disease. Stroke, 14, 475–479.
  • Marcus, A. J. (1990). Thrombosis and inflammation as multicellular process: pathophysiologic significance of transcellular metabolism. Blood, 66, 1093–1097.
  • Cerletti, C., Evangelista V. and de Gaetano, G. (1992). Polymorphonuclear leukocyte-dependent modulation of platelet function: Relevance to the pathogenesis of thrombosis. Pharmacol Res, 26, 261–268.
  • Engler, R. L., Schmid-Schoenbein, G. W. and Pavla, R. (1983). Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Amer J Pathol, 111, 98–111.
  • Mehta, J. L., Lawson, D. L., Nichols, W. W. and Mehta, P. (1989). Modulation of vascular tone by neutrophils: Dependence on endothelial integrity. Amer J Physiol, 257, H1315–H1320.
  • Barnhart, M. I. (1968). Role of blood coagulation in acute inflammation. Biochem Pharmacol, 17 (Suppl): 205–219.
  • Weksler, B. B. and Coupal, C. E. (1973). Platelet-dependent generation of chemotactic activity in serum, J Exp Med, 137, 1419–1430.
  • Spisani, S., Giuliani, A., Cavalleti, T., Zaccarini, M., Milani, L., Gavioli, R. and Traniello, S. (1992). Modulation of neutrophil functions by activated platelet release factors. Inflammation, 16, 149–157.
  • Del Maschio, A., Dejna, E. and Bazzoni, G. (1993). Bidirectional modulation of platelet and polymorphonuclear leukocytes activities. Ann Hematol, 67, 23–31.
  • Selby, C., Drost, E., Lannan, S., Wraith, P. K. and Macnee, W. (1991). Neutrophil retention in the lungs of patients with chronic obstructive pulmonary disease. Am Rev Resp Dis, 143, 1359–1364.
  • Bazzoni, G., Dejana, E. and Delmaschio, A. (1991). Platelet-neutrophil interactions-possible relevance in the pathogenesis of thrombosis and inflammation. Haematologica, 76, 491–499.
  • Faint, R. W. (1992). Platelet-neutrophil interactions: Their significance. Blood Rev, 6, 83–91.
  • Stewart, B. J. (1993). Neutrophils and deep venous thrombosis. Haemostasis, 23, 127–140.
  • Babior, B. M., Kipnes, R. S. and Curnutte, J. T. (1973). Biological defense mechanisms. The. production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest, 52, 421–444.
  • Homan-Muller, J. W. T., Weening, R. S. and Roos, D. (1975). Production of hydrogen peroxide by phagocytosing human granulocytes. J Lab Clin Med, 85, 198–207.
  • Tauber, A. I. and Babior, B. M. (1977). Evidence for hydroxyl radical production by human neutrophils. J Clin Invest, 60, 374–379.
  • Rosen, H. and Klebanoff, S. J. (1976). Chemiluminescence and superoxide radical production by myeloperoxidase deficient leukocytes. J Clin Invest, 58, 50–60.
  • Salvemini, D. and Botting, R. (1990). The effect of free radicals scavengers on platelet adhesion and aggregation. Drug News Perspectives, 13, 202–212.
  • Salvemini, D., Radziszewski, W., Mollace, V., Moore, A., Willoughly, D. and Vane, J. R. (1991). Diphenylene iodonium, an inhibitor of free radical formation, inhibits platelet aggregation. Eur. J. Pharmacol., 199, 15–18.
  • Salvemini, D. and Botting, R. (1992). Modulation of platelet function by free radicals and free radical scavengers. Trends Pharmacol. Sci., 14, 36–42.
  • Handin, R. I., Karabin, R., Boxer, and G. J. (1977). Enhancement of platelet function by superoxide anion. J. Clin. Invest., 59, 959–965.
  • Salvemini, D., de Nucci, G., Sneddon, J. M., Vane, J. R. (1989). Superoxide anions enhance platelet adhesion and aggregation. Brit. J. Pharmacol., 97, 1145–1150.
  • Pratico, D., Luliano, L., Alessandri, C., Camterina, C., and Violi, F. (1993). Polymorphonuclear leukocyte-derived O2-reactive species activate primed platelets in human whole blood. Am. J. Physiol., 264 (Heart Circ Physiol) 33, H1582–H1587.
  • Hirafuji, M. and Shinoda, H. (1993). Roles of prostacyclin, EDRF and active oxygens in leukocyte-dependent platelet adhesion to endothelial cells induced by platelet-activating factor in vitro. Brit. J. Pharmacol., 109, 524–529.
  • Renesto, P., Tahar, M. S. and Chingard, M. (1994). Modulation by superoxide anions of neutrophil-mediated platelet activation. Biochem. Pharmacol., 47, 1401–1404.
  • Rodivien, R., Lindon, J. N. and Levine, P. H. (1976). Physiology of blood platelet following exposure to hydrogen peroxide. Br. J. Haematol., 33, 19–26.
  • Del Principe, D., Menichelli, A., De Matteis, W., Di Corpo, M. L., Di Giulio, S. and Finazzi-Agro, A. (1985). Hydrogen peroxide has a role in aggregation of human platelets. FEBS Lett., 185, 142–146.
  • Ohyashiki, T., Kobayashi, M. and Matsui, K. (1991). Oxygen-radical-mediated lipid peroxidation and inhibition of ADP-induced platelet aggregation. Arch. Biochem. Biophys., 288, 282–286.
  • Stuart, M. J. and Holmsen, H. (1977). Hydrogen-peroxide, an inhibitor of platelet function—Effect on adenine nucleotide metabolism and release reaction. Am. J. Hematol., 2, 53–63.
  • Pratico, D., Luliano, L., Ghiselli, A., Alessandri, C. and Violi, F. (1991). Hydrogen peroxide as trigger of platelet aggregation. Haemostatis, 21, 169–174.
  • Hecker, G., Utz, J., Kupferschmidt, R. J. and Ullrich, V. (1991). Low levels of hydrogen peroxide enhance platelet aggregation by cyclooxygenase activation. Eicosanoids, 4, 107–113.
  • Pratico, D., Luliano, L., Pulcinelli, F. M., Bonavita, M. S., Gazzaniga, P. P. and Violi, F. (1992). Hydrogen peroxide triggers activation of human platelets selectively exposed to nonaggregating concentrations of arachidonic acid and collagen. J. Lab. Clin. Med., 119, 364–370.
  • Test, S. T. and Weiss, S. J. (1984). Quantitative and temporal characterization of the extracellular H2O2 pool generated by human neutrophils. J. Biol. Client., 259, 399–105.
  • Iuliano, L., Pratico, D., Bonavita, M. S., Violi, F. (1992). Involvement of phospholipase A2 in H2O2-dependent platelet activation. Platelets, 2, 87–90.
  • Bosin, T. R. (1989). Oxidant stress stimulates active transport of serotonin by platelets. J. Pharmacol. Exp. Ther., 248, 67–72.
  • Canoso, R. T., Rodvien, R., Scoon, K., Levine, P. H. (1974). Hydrogen peroxide and platelet function. Blood, 43, 645–656.
  • Levine, P. H., Weinger, R. S., Simon, J., Scoon, K. L., Krinsky, N. I. (1976). Leukocyte platelet interaction. Release. of hydrogen peroxide by granulocytes as a modulator of platelet reactions. J. Clin. Invest., 57, 955–963.
  • Sumiya, T., Fujimoto, Y., Nishida, H., Morikawa, Y., Sakauma, S., Fujita, T. (1993). Effects of reactive oxygen species on arachidonic acid metabolism in rabbit platelets. Free Rad. Biol. Med., 15, 101–104.
  • Clark, R. A., Klebanoff, S. J. (1979). Myeloperoxidasemediated platelet release reaction. J. Clin. Invest., 63, 177–183.
  • Ambrasio, G., Golino, P, Pasucci, I., Rosolowsky, M., Campbell, W. B., DeClark, F., Tritto, I., Chariello, M. (1994). Modulation of platelet function by reactive oxygen metabolites. Amer. J. Physiol., 267 (Heart Circ Physiol.36): H308–H318.
  • Hashizume, T., Yamaguchi, H., Kawamoto, A., Tamura, A., Sato, T., Fuji, T. (1991). Lipid peroxide makes rabbit platelet hyperaggregable to agonists through phospholipase A2 activation. Arch. Biochem. Biophys., 289, 47–52.
  • Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., Freeman, B. A. (1990). Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci., 87, 1620–1624.
  • Rubanyi, G. M., Ho, E. H., Cantor, E. H., Lumma, W. C., Botelho, L. H. P. (1991). Cytoprotective function of nitric oxide: Inactivation of superoxide radicals produced by human leukocytes. Biochem. Biophys. Res. Commun., 181, 1392–1397.
  • Clancy, R. M., Leszczynska-Piziak, J., Abramson, S. B. (1992). Nitric oxide an endothelial cell relaxation factor inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase. J. Clin. Invest, 90, 1116–1121.
  • Seth, R, Kumari, R., Dikshit, M., Srimal, R. C. (1994). Effect of NO and arginine on rat polymorphonuclear leukocytes. Can. J. Physiol. Pharmacol., 72, (Suppl 1): 477.
  • Seth, R, Kumari, R., Dikshit, M., Srimal, R. C. (1994). Modulation of rat peripheral polymorphonuclear leukocyte response by nitric oxide and arginine. Blood, 84, 2741–2748.
  • Alexandere, A., Doni, M. G., Padoin, E., Deana, R. (1986). Inhibition by antioxidants of agonist evoked cytosolic calcium increase, ATP secretion and aggregation of aspirinated human platelets. Biochem. Biophys. Res. Commun., 139, 509–514.
  • Violi, F., Ghiselli, A., Iuliano, L., Alessandri, C., Cordova, C., Balsano, F. (1988). Influence of hydroxyl radicals on platelet function. Haemostasis, 18, 91–98.
  • Iuliano, L., Pedersen, J. Z., Pratico, D., Rotilio, G. and Violi, F. (1994). Role of hydroxyl radicals in the activation of human platelets. Eur. J. Biochem., 221, 695–704.
  • Marshall, L. A. and Roshak, A. (1993). Coexistence of two biochemically distinct phospholipase A2 activities in human platelet, monocyte, and neutrophil. Biochem. Cell. Biol., 71, 331–339.
  • Clark, R. A. and Klebanoff, S. J. (1980). Neutrophil-platelet interaction mediated by myeloperoxidase by hydrogen peroxide. J. Immunol., 124, 399–405.
  • Marwijk Kooy, M. van., Akkerman, J. W. N., Asbeck, S. van., Borghius, L. and Prooijen, H. C. van. (1993). UVB radiation exposes fibrinogen binding sites on platelets by activating protein kinase C via reactive oxygen species. Brit. J. Haematol., 83, 253–258.
  • Higgs, G. A., McCall, E. and Youlten, L. J. F. (1975). A chemotactic role for prostaglandins released from polymorphonuclear leukocytes during phagocytosis. Brit. J. Pharmacol., 53, 539–546.
  • Higgs, G. A., Bunting, S., Moncada, S. and Vane, J. R. (1976). Polymorphonuclear leukocytes produce thromboxane-A2-like activity during phagocytosis. Prostaglandins, 12, 749–757.
  • Evangelista, V., Rajtar, G., de Gaetano, G., White, J. G. and Cerletti, C. (1991). Platelet activation by FMLP-stimulated polymorphonuclear leukocytes: The activity of cathepsin G is not prevented by antiproteinase. Blood, 77, 2379–2388.
  • Maugeri, N., Evangelista, V., Piccardoni, P., Dell Elba, G., Celardo, A., de Gaetano, G. and Cerletti, C. (1992). Transcellular metabolism of arachidonic acid: Increased platelet thromboxane generation in the presence of activated polymorphonuclear leukocytes. Blood, 80, 447–451.
  • Hernandez, R., Alemany, M., Bozzo, J., Buchnan, M. R., Ordinas, A. and Bastida, E. (1993). Platelet adhesivity to subendothelium is influenced by polymorphonuclear leukocytes: Studies with aspirin and salicylate. Haemostasis, 23, 1–7.
  • Buchanan, M. R., Butt, R. W. and Turpie, A. G. G. (1987). Effect of nafazatrom on platelet function and release: Relationship to symptomatic episodes in patients with peripheral vascular disease. Amer. Heart. J., 113, 1133–1137.
  • Borgeat, R, Hamberg, M. and Samuelsson, B. (1976). Transformation of arachidonic acid and homo—linolenic acid by rabbit polymorphonuclear leukocytes. Monohydroxy. acids from novel lipoxygenases. J. Biol. Chem., 251, 7816–7820.
  • Samuelsson, B. (1983). Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science, 220, 568–575.
  • Maclouf, J., Fruteau de Laclos, B. and Borgeat, P. (1982). Stimulation of leukotriene biosynthesis in human blood leukocytes by platelet-derived 12-hydroxyicosatetraenoic acid. Proc. Natl. Acad. Sci. USA, 79, 6042–6046.
  • Marcus, A. J., Brokeman, M. J., Safier, L. B., Ullman, H. L. and Islam, N. (1982). Formation of leukotrienes and other hydroxy acids during platelet-neutrophil interactions in vitro. Biochem. Biophys. Res. Commun., 109, 130–137.
  • Jundi, T. W., Spycher, M. O., Nydegger, U. E. and Barandun, S. (1986). Platelet-leukocyte interactions: selective binding of thrombin stimulated platelets to human monocytes, polymorphonuclear leukocytes and related cell lines. Blood 67, 629–636.
  • Lindoren, J. A., Hansson, G. and Samuelsson, B. (1981). Formation of novel hydroxylated eicosatetraenoic acids in preparations of human polymorphonuclear leukocytes. FEBS Lett., 128, 329–335.
  • Borgeat, P., Fruteau de Laclos, B., Picard, S., Drapeau, J., Vallerland, P. and Corey, E. J. (1982). Studies on the mechanism of formation of the 5S, 12S-dihydroxy-6,8,10,14,(E,2,E,2)-icosatetraenoic acid in leukocytes. Prostaglandins, 23, 713–724.
  • Antoine, C., Murphy, R. C., Henson, P. M. and Maclouf, J. (1992). Time-dependent utilization of platelet arachidonic acid by the neutrophil in formation of 5-lipoxygenase products in platelet-neutrophil co-incubations. Biochem. Biophys. Acta., 1128, 139–146.
  • Dahl, M-L. (1985). Aggregating and prostanoid-releasing effects of platelet-activating factor and leukotrienes on human polymorphonuclear leukocytes and platelets. Int. Arch. Allergy Appl. Immunol., 76, 145–150.
  • Marcus, A. J., Safier, L. B., Ullman, H. L., Islam, N., Brokeman, M. J. and von Schacky, C. (1987). Studies of the mechanisms of w-hydroxylation of platelet 12-hydroxyecosatetraenoic acid (12-HETE) by unstimulated neutrophils. J. Clin. Invest., 79, 179–187.
  • Marcus, A. J., Safier, L. B., Ullman, H. L., Islam, N., Brokeman, M. J., Falck, J. R., Fischer, S. and von Schacky, C. (1988). Platelet-neutrophil interactions: (12S)-hydroxyeicosatetraen-l,20-dioic acid, a new eicosanoid synthesized by unstimulated neutrophils from (12S)-20-dihydroeicosatetraenoic acid. J. Biol. Chem., 263, 2223–2229.
  • McCulloch, R. K., Croft, K. D. and Vandongen, R. (1992). Enhancement of platelet 12-HETE production in the presence of polymorphonuclear leukocytes during calcium ionophore stimulation. Biochem. Biophys. Acta., 1133, 142–146.
  • Schattner, M. A., Geffner, J. R., Istruiz, M. A. and Lazzari, M. A. (1990). Inhibition of human platelet activation by polymorphonuclear leukocytes. Brit. J. Pharmacol., 101, 253–256.
  • Nicolini, F. A., Wilson, A. C., Mehta, P. and Mehta, J. L. (1990a). Comparative platelet inhibitory effects of human neutrophils and lymphocytes. J. Lab. Clin. Med., 116, 147–152.
  • Nicolini, F. A. and Mehta, J. L. (1990b). Inhibitory effect of unstimulated neutrophils on platelet aggregation by release of a factor similar to endothelium derived relaxing factor (EDRF). Biochem. Pharmacol., 40, 2265–2269.
  • Evangelista, V., Rajtar, G., Gaetano, G. D., White, J. G. and Cereletti, C. (1991). Platelet activation by fmlp-stimulated polymorphonuclear leukocytes. The. activity of cathepsin G is not prevented by antiproteinases. Blood, 77, 2379–2388.
  • Del Maschio, A., Evangelista, V. G., Ratar, G., Chen, C., Cerletti C. and De Gaetano, G. (1990). Platelet activation by polymorphonuclear leukocytes exposed to chemotactic agents. Amer. J. Physiol., 258, H870–H879.
  • Valles, J., Santos, M. T., Marcus, A. J., Safier, L. B., Broekman, M. J., Islam, N., Ullman, H. L. and Aznar, J. (1993). Downregulation of human platelet reactivity by neutrophils: Participation of lipoxygenase derivatives and adhesive proteins. J. Clin. Invest., 92, 1357–1365.
  • Buchanan, M. R. and Bastida, E. (1988). Endothelium and underlying membrane reactivity with platelets, leukocytes and tumor cells: Regulation by the lipoxygenase-derived fatty acid metabolites, 13-HODE and HETES. Medical Hypotheses, 27, 317–325.
  • De Graaf, J. C., Bult, H., De Meyer, G. R. Y. and Sixma, J. J. (1989). Platelet adhesion to subendothelial structures under flow conditions: No effect of lipoxygenase product 13-HODE. Thromb. Haemostas., 62, 802–806.
  • Fitzpatrick, F. A. and Murphy, R. C. (1988). Cytochrome P-450 metabolism of arachidonic acid formation and biological actions of epoxygenase derived eicosanoids. Pharmacol. Rev., 40, 229–241.
  • Samuelsson, B., Dahlen, S. E., Lindgren, J. A., Rouzer, C. A. and Serhan, C. N. (1987). Leukotrienes and lipoxins: Structure, biosynthesis and biological effects. Science, 237, 1171–1176.
  • Flore, S. and Serhan, C. N. (1990). Formation of lipoxins and leukotrienes during receptor-mediated interactions of human platelet and recombinant human granulocyte macrophage colony stimulating factor-primed neutrophils. J. Exp. Med., 172, 1451–1458.
  • Serhan, C. N. and Sheppard, K. A. (1990). Lipoxin formation during human neutrophil-platelet interactions: Evidence for the transformation of leukotriene A4 by platelet lipoxygenase in vitro, J. Clin. Invest., 85, 772–780.
  • Tornhamre, S., Gigou, A., Edenius, C., Lellouche, J. P. and Lindgren, J. A. (1992). Conversion of 5,6-dihydrxyeicosatetraenoic acids-A novel pathway for lipoxin formation by human platelets. FEBS Lett., 304, 78–82.
  • Edenius, C., Tornhamre, S. and Lindgren, J. A. (1994). Stimulation of lipoxin synthesis formed 12-hydroperoxyeicosatetraenoic acid in activated human platelets. Biochem. Biophys. Acta., 1210, 361–367.
  • Yamamoto, S. (1991). Enzymatic lipid peroxidation: Reactions of mammalian lipoxygenases. Free Rad. Biol. Med., 10, 149–159.
  • Kenivo, A. L., Nekrasv, A. S., Lankin, V. Z., Kholodov, A. V., Vikhert, A. M. and Popov, G. K. (1989). Lipoxin B as an enhancing factor of spontaneous platelet aggregation in whole human blood. Byull. Eksp. Biol. Med., 18, 26–28.
  • Lefer, A. M., Gregory, L. S., Leffer, D. J., Brezinski, M. E., Nicolaou, K. C., Veale, C. A., Abe, Y. and Bryan, S. J. (1988). Lipoxin A4 and B4: Comparison of eicosanoids having bronchoconstriction and vasodilator activity. Proc. Natl. Acad. Sci., 85, 8340–8344.
  • Bratt, J., Lerner, B., Ringertz, B. and Palmblad, J. (1994). Lipoxin A4 induces neutrophil dependent cytotoxicity for human endothelial cells. Scand. J. Immunol., 39, 351–354.
  • Benveniste, J., Henson, P. M. and Cochrane, C. G. (1972). Leukocyte-dependent histamine release from rabbit platelets: The role of IgE, basophils and a platelet-activating factor. J. Exp. Med., 136, 1356–1377.
  • Benveniste, J. and Chingnard, M. (1985). A role for PAF-acether (platelet-activating factor) in platelet-dependent vascular diseases? Circulation, 72, 713–717.
  • Oda, M., Satouchi, K., Yasunaga, K. and Saito, K. (1986). Polymorphonuclear leukocyte-platelet interactions: acetyl ether phosphocholine-induced platelet activation under stimulation with chemotactic peptide. J. Biochem., 100, 1117–1123.
  • Coeffier, E., Joseph, D., Prevost, M. C. and Vargaftig, B. B. (1987). Platelet-leukocyte interactions: Activation of rabbit platelets by FMLP-stimulated neutrophils. Brit. J. Pharmacol., 92, 393–406.
  • Coeffier, E., Delautier, D., Le Couedic, J-P, Chignard, M., Denzot, Y. and Benveniste, J. (1990). Cooperation between platelets and neutrophils for PAF-acether (platelet-activating factor) formation. J. Leukocyte. Biol., 47, 234–243.
  • Renesto, F., Kadiri, C. and Chignard, M. (1992). Combined activation of platelets by cathepsin G and platelet activating factor, two neutrophil derived agonists. Brit. J. Haematol, 80, 205–213.
  • Zhou, W., Javors, M. A. and Olson, M. S. (1992). Platelet-activating factor as an intracellular signal in neutrophil-dependent platelet activation. J. Immunol., 149, 1763–1769.
  • Hirafuji, M. and Shinoda, H. (1991). Platelet-leukocyte interaction in adhesion to endothelial cells induced by platelet-activating factor in vitro. Brit. J. Pharmacol., 103, 1333–1338.
  • Damiano, V. V., Kucich, U., Murer, E., Laudenslager, N. and Weinbaum, G. (1988). Ultrastructural quantitation of peroxidase- and elastase-containing granules in human neutrophils. Am. J. Pathol., 131, 234–245.
  • Campbell, E. J., Silveman, E. K. and Campbell, M. A. (1989). Elastase and cathepsin G of human monocytes. Quantification. of cellular content, release in response to stimuli and heterogeneity in elastase-mediated proteolytic activity. J. Immunol., 143, 2961–2968.
  • Halloren, R. and Venge, P. (1976). Cationic proteins of human granulocytes: effects on human platelet aggregation and serotonin release. Inflammation, 1, 359–370.
  • Bykowska, K., Kaczanowska, J., Karpowicz, M., Stachurska, J. and Opec, M. (1983). Effect of neutral proteases from blood leukocytes on human platelets. Thromb. Haemost., 50, 768–772.
  • Chignard, M., Selak, M. A. and Smith, J. B. (1986). Direct evidence for the existence of a neutrophil-derived platelet activator (neutrophilin). Proc. Natl. Acad. Sci., 83, 8609–8613.
  • Selak, M. A. (1994). Cathepsin G and thrombin: evidence for two different platelet receptors. Biochem. J., 297, 269–275.
  • Selak, M. A., Chignard, M. and Smith, J. B. (1988). Cathepsin G is a strong platelet agonist released by neutrophils. Biochem. J. 251, 293–299.
  • Molino, M., Di Lallo, M., De Gaetano, G. and Cerletti, C. (1992). Intracellular Ca + + rise in human platelets induced by polymorphonuclear-leukocyte-derived cathepsin G. Biochem. J., 288, 741–745.
  • Molino, M., Blanchard, N., Belmonte, E., Tarver, A. P., Abrams, C., Hoxie, J. A., Cereletti, C. and Brass, L. F. (1994). Proteolysis of the human platelet and endothelial cell thrombin receptor by neutrophil-derived cathepsin G. J. Biol. Chem., 270, 11168–11175.
  • LaRosa, C. A., Rohrer, M. J., Benoit, S. E., Rodino, L. J., Barnard, M. R. and Michelson, A. D. (1994). Human neutrophil cathepsin G is a potent platelet activator. J. Vas. Surg., 19, 306–319.
  • Brower, M. S., Levine, R. I. and Garry, K. (1985). Human neutrophil elastase modulate platelet function by limited proteolysis of membrane glycoproteins. J. Clin. Invest., 75, 657–666.
  • Wicki, A. N. and Clemetson, K. J. (1985). Structure and function of platelet membrane glycoproteins lb and V: Effects of leukocyte elastase and other proteases on platelet response to Von Willebrand factor and thrombin. Eur. J. Biochem., 153, 1–11.
  • Kornecki, E., Ehrlick, H., De Mars, D. and Lenox, R. H. (1986). Exposure of fibrinogen receptors inhuman platelets by proteolysis with elastase. J. Clin. Invest., 77, 750–756.
  • Selak, M. A. (1992). Neutrophil elastase potentiates cathepsin G-induced platelet activation. Thromb. Haemostasis., 68, 570–576.
  • Aziz, K. A., Cawley, J. C., Kamiguti, A. S. and Zuzel, M. (1995). Degradation of platelet glycoprotein Ib by elastase release from primed neutrophils. Brit. J. Haematol., 91, 46–54.
  • Renesto, P., Halbawachs-Mecarelli, L., Nusbaum, P, Lesavre, P. and Chingard, M. (1994). Proteinase 3. A neutrophil proteinase with activity on platelets. J. Immunol., 152, 4612–4617.
  • Renesto, P. and Chingard, M. (1995). Neutrophil-mediated platelet activation: A key role for serine proteinases. Gen. Pharmacol., 26, 905–910.
  • Borregaard, N., Lollike, K., Kjeldsen, L., Senoelov, H., Bastholm, L., Nielsen, M. and Bainton, D. F. (1993). Human neutrophil granules and secretory vesicles. Eur. J. Haematol, 51, 187–198.
  • Leveugle, B., Mazurier, J., Legrand, D., Mazurier, C., Montreuil, J. and Spik, G. (1993). Lactotransferrin binding to its platelet receptor inhibits platelet aggregation. Eur. J. Biochem., 213, 1205–1211.
  • Mazoyer, E., Levy-Toledano, S., Rendu, F., Hermant, L., Lu., Fiat, A. M., Jolles, P. and Caen, J. (1990). KRDS, a new peptide derived from human lactotranferrin inhibits platelet aggregation and release reaction. Eur. J. Biochem., 194, 43–49.
  • Qian, Z-Y., Jolles, P, Migliore-Samour, D. and Fiat, A-M. (1995). Isolation and characterization of sheep lactoferrin, an inhibitor of platelet aggregation and comparison with human lactoferrin. Biochem. Biophys. Acta., 1243, 25–32.
  • Salvemini, D., de Nucci, G., Sneddon, J. M. and Vane, J. R. (1989). Human neutrophils and mononuclear cells inhibit platelet aggregation by releasing a nitric oxide-like factor. Proc. Natl. Acad. Sci., 86, 6328–6332.
  • Schmidt, H. H. H., Seifert, R. and Bohme, E. (1989). Formation and release of nitric oxide from human neutrophil and HL-60 cells induced by chemotactic peptide, platelet activating factor and leukotriene. FEBS. Lett., 244, 357–360.
  • Strum, R. J., Holloway, D. A., Hardysh, B., Grimes, D., Weichman, B. M. and Rimele, T. J. (1990). Isolation and chemical characterization of neutrophil-derived relaxing factor. In.: Endothelium-Derived Relaxing Factors. Rubanyi, G. M., Cedar Knolls, N. J. and Vanhoutte, P. M. (eds) Basel Karger, 221–227.
  • Moncada, S., Palmer, R. M. J. and Higgs, E. A. (1991). Nitric oxide: Pathophysiology and pharmacology. Pharmacol. Rev., 43, 109–142.
  • Bryant, J. L., Mehta, P, Von der Porten, A. and Mehta, J. L. (1992). Co-purification of 130 KD nitric oxide synthase and a 22 KD link protein from human neutrophils. Biochem. Biopliys. Res. Commun., 189, 558–564.
  • McCall, T., Palmer, R. M. J. and Moncada, S. (1991). Induction of nitric oxide synthase in rat peritoneal neutrophils and its inhibition by dexamethasone. Eur. J. Immunol., 21, 2523–2527.
  • Dikshit, M., Kumari, R. and Srimal, R. C. (1993). Pulmonary thromboembolism-induced alterations in nitric oxide release from rat circulating neutrophils. J. Pharmacol. Exp. Ther., 265, 1269–1373.
  • Kumari, R., Seth, P, Dikshit, M. and Srimal, R. C. (1993). Augmentation in nitric oxide release from polymorphonuclear leukocytes following thrombosis. Endothelium, 1, s81.
  • Strum, R. J., Holloway, D. A., Hardysh, B., Grimes, D., Weichman, B. M. and Rimele, T. J. (1989). Potential regulatory role of inflammatory cells on local vascular smooth muscle tone. Agents Action, 27, 414–417.
  • Faint, R. W., Mackie, I. J. and Machin, S. J. (1991). Platelet aggregation is inhibited by a nitric oxide-like factor released from human neutrophils in vitro. Brit. J. Haematol, 77, 539–545.
  • Pearson, J. D., Carleton, J. S. and Gordon, J. L. (1980). Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smooth muscle cells in culture. Biochem. J., 190, 412–429.
  • Smith, G. P. and Peters, T. J. (1981). Subcellular localization and properties of adenosine diphosphatase activity in human polymorphonuclear leukocytes. Bichim. Biophys. Acta., 673, 234–242.
  • Coade, S. B. and Pearson, J. D. (1989). Metabolism of adenine nucleotides in human blood. Circ. Res., 65, 531–537.
  • Zatta, A., Pandolfo, L., Caparrotta, L., Prosdocimi, M., Dejana, E. and Del Maschio, A. (1993). Platelet aggregation induced by the endoperoxide analogue U46619 is inhibited by polymorphonuclear leukocyte ADPase activity. Arteriosclerosis Thrombosis., 13, 696–701.
  • Villa, S., Rotilio, D., Donati, M. B. and de Gaetano, G. (1981). Human blood leukocytes in vitro generate an inhibitor of platelet aggregation. Thromb. Res., 24, 485–487.
  • Kadota, K., Yui, Y., Hattori, R., Uchizumu, H. and Kawai, R. (1991). A new relaxing factor in supernatant of incubated rat peritoneal neutrophils. Amer. J. Physiol, 260, H967–H972.
  • Sessa, W. C. and Mullane, K. M. (1990). Release of a neutrophil-derived vasoconstrictor agent which augments platelet-induced contractions of blood vessels in vitro. Brit. J. Pharmacol., 99, 553–559.
  • Liu, J. J., Chen, J. R., Wiley, J., Johnston, C. I. and Buxton, B. F. (1993). Inhibition by a stable factor derived from neutrophils of endothelium-dependent relaxation in rat aorta. Amer. J. Physiol, 265 (Heart Circ. Physiol., 34), H1454–%H1459.
  • Liu, J. J., Chen, J. R., Bradley, C. J., Xie, B., Johnston, C. I. and Buxton, B. F. (1994). Autologous neutrophil derived supernatant inhibit endothelium dependent relaxation in human coronary bypass graft. Cardiovasc. Res., 28, 1353–1359.
  • Liu, J. J., Chen, J. R., Bradley, C. J., Johnston, C. I. and Buxton, B. F. (1995). Induction of Ca + + signaling and possible exocytosis in endothelial cells by a stable leukocyte-derived factor. Biochem. Biophys. Res. Commun., 206, 146–152.
  • Liu, J. J., Xie, B., Smith, I. L., Johnston, C. I. and Buxton, B. F. (1994). A stable leukocyte-derived factor inhibits platelet aggregation. Biochem. Biophys. Res. Commun., 201, 878–882.
  • Kumari, R., Seth, P. and Dikshit, M. (1996). Study on an antiaggregatory factor present in rat circulating neutrophil supernatant, Ind. J. Pharmacol, 28, 41.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.