65
Views
7
CrossRef citations to date
0
Altmetric
The Hematopoietic Microenvironment

Phenotypic and Functional Characterization of Human Marrow Vascular Stromal Cells

, , , , , , , & show all
Pages 257-283 | Received 15 Jun 1999, Published online: 13 Jul 2016

References

  • Burckhardt, R. (1970). Farbaltas der klinischen Histopathologie von Knochenmark und Knochen. Springer Verlag, Berlin.
  • Van Dyke, D., Parker, A. H., McRae, J., Dobson, E. L., Yano, Y., Naets, J. P. and Linfoot, J. (1971). Markedly increased bone blood flow in myelofibrosis. J. Nuclear Med., 12, 506–512.
  • Charbord, P., Tavian, M., Humeau, L. and Péault, B. (1996). Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood, 87, 4109–4119.
  • Lichtman, M. A., Packman, C. H. and Coustine, L. S. (1989). Molecular and cellular traffic across the marrow sinuses, p. 87–140 in “Handbook of the hemopoietic microenvironment”. Ed. Tavassoli, M., Humana Press, Clifton, New Jersey.
  • Wolf, B. C. and Neiman, R. S. (1985). Myelofibrosis with myeloid metaplasia: pathophysiologic implications of the correlation between bone marrow changes and progression of splenomegaly. Blood, 65, 803–809.
  • Chervenick, P. A. (1973). Increase in circulating stem cells in patients with myelofibrosis. Blood, 41, 67–71.
  • Ward, H. P. and Block, M. H. (1971). The natural history of agnogenic myeloid metaplasia (AMM) and a critical evaluation of its relationship with the myeloproliferative syndrome. Medicine, 50, 357–420.
  • Friedenstein, A. J., Chailakhjan, R. K., Latsinik, N. V., Panasyuk, A. F. and Keiliss-Borok, V. (1974). Stromal cells responsible for transferring the microenvironment of the hemapoietic tissues. Transplantation, 17, 331–340.
  • Trentin, J. J. (1989). Hemopoietic microenvironments. Historical perspectives, status and projections, p. 1–87, in: “Handbook of the hemopoietic microenvironment”. Ed. Tavassoli, M., Humana Press, New Jersey.
  • La Pushin, R. W. and Trentin, J. J. (1977). Identification of distinctive stromal elements in erythroid and neutrophil granuloid spleen colonies: light and electron microscopic study. Exp. Hematol., 5, 505–522.
  • Dexter, T. M., Allen, T. D. and Lajtha, L. G. (1976). Conditions controlling the proliferation of haemopoietic stem cells in vitro. J. Cell. Physiol., 91, 335–344.
  • Gartner, S. and Kaplan, H. S. (1980). Long-term culture of human bone marrow cells. Proc. Natl. Acad. Sci., 77, 4756–4759.
  • Greenberg, H. M., Newburger, P. E., Parker, L. M., Novak, T. and Greenberger, J. S. (1981). Human granulocytes generated in continuous bone marrow culture are physiologically normal. Blood, 58, 724–732.
  • Hocking, W. G. and Golde, D. W. (1980). Long-term human bone marrow cultures. Blood, 56, 118–124.
  • Moore, M. A. S. and Sheridan, A. P. (1979). Pluripotential stem cell replication in continuous human, prosimian and murine bone marrow culture. Blood Cells, 5, 297–311.
  • Galmiche, M. C., Koteliansky, V. E., Hervé, P. and Charbord, P. (1993). Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood, 82, 66–76.
  • Wight, T. N., Kinsella, M.G., Keating, A. and Singer, J. W. (1986). Proteoglycans in human long-term bone marrow cultures: biochemical and ultrastructural analyses. Blood, 67, 1333–1343.
  • Lerat, L., Lissitzky, J. C., Singer, J. W., Keating, A., Hervé, P. and Charbord, P. (1993). The role of stromal cells and macrophages in fibronectin biosynthesis and matrix assembly in human long-term marrow cultures. Blood, 82, 1480–1492.
  • Charbord, P. (1995). Hematopoietic stem cells in human long-term marrow culture, p. 151–169, in: “Hematopoietic Stem Cells. Biology and Therapeutic Applications”. Ed. Levitt, D., Mertelsmann R. Marcel Dekker, New York.
  • Liesveld, J. L., Abboud, C. N., Duerst, R. E., Ryan, D. H., Brennan, J. K. and Lichtman, M. A. (1989). Characterization of human marrow stromal cells: role in progenitor cell binding and granulopoiesis. Blood, 73, 1794–1800.
  • Moreau, I., Duvert, V., Caux, C., Galmiche, M. C., Charbord, P., Banchereau, J. and Saeland, S. (1993). Myofibroblastic stromal cells isolated from human bone marrow induce the proliferation of both early myeloid and B lymphoid cells. Blood, 82, 2396–2405.
  • Charbord, P., Gown, A. M., Keating, A. and Singer, J. W. (1985). CGA-7 and HHF, two monoclonal antibodies that recognize muscle actin and react with adherent cells in human long-term bone marrow cultures. Blood, 66, 1138–1142.
  • Tamayo, E., Charbord, P., Li, J. and Hervé, P. (1994). A quantitative assay that evaluates the capacity of human stromal cells to support granulomonopoiesis in situ. Stem Cells, 12, 304–315.
  • Sensebé, L., Li, J., Lilly, M., Crittenden, C., Hervé, P., Charbord, P. and Singer, J. W. (1995). Non-transformed colony-derived stromal cell lines from normal human marrows. I. Growth requirement and myelopoiesis supportive ability. Exp Hematol, 23, 507–513.
  • Li, J., Sensebé, L., Hervé, P. and Charbord, P. (1995). Non-transformed colony-derived stromal cell lines from normal human marrows. II. Phenotypic characterization and differentiation pathway. Exp Hematol, 23, 133–141.
  • Keating, A., Whalen, C. K. and Singer, J. W. (1983). Cultured marrow stromal cells express common acute lymphoblastic leukaemia antigen (CALLA): implications for marrow transplantation. Brit. J. Haematol., 55, 623–628.
  • Pebusque, M. J., Lopez, M. C., Branch, D., Guilbert, L., Linklater, L., Tabilio, A., Lavezzi, C. and Mannoni, P. (1987). Phenotypic analysis of human long-term bone marrow culture cells and derived cell lines, p.632–642 in “Leucocyte typing III. White cell differentiation antigens”. Ed. Michael, M., AJ, Oxford University Press, Oxford.
  • Singer, J. W., Keating, A., Cuttner, J., Gown, A. M., Jacobson, R., Killen, P. D., Moohr, J. W., Najfeld, V., Powell, J., Sander, J., Striker, G. E. and Fialkow, P. J. (1984). Evidence for a stem cell common to hematopoiesis and its in vitro microenvironment: studies of patients with clonal hematopoietic neoplasia. Leuk. Res., 8, 535–545.
  • Metzgar, R. S., Borowitz, M. J., Jones, N. H. and Dowell, B. L. (1981). Distribution of common acute lymphobastic leukemia antigen in non hematopoietic tissues. J. Exp. Med., 154, 1249–1254.
  • Iyer, J., Duerst, R. E., Looney, J. N., Humphries, R. K., Abboud, C. N. and Frantz, C. N. (1990). An 80,000-kd glycoprotein cell surface antigen found only on nonhematopoietic cells in human bone marrow. Exp. Hematol., 18, 384–389.
  • Simmons, P. J. and Torok-Storb, B. (1991). Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood, 78, 55–62.
  • Ronnov-Jessen, L., Celis, J. E., Van Deurs, B. and Petersen, O. W. (1992). A fibroblast-associated antigen: characterization in fibroblasts and immunoreactivity in smooth muscle differentiated stromal cells. J. Histochem. Cytochem., 40, 475–486.
  • Guerriero, A., Worford, L., Holland, H. K., Guo, G. R., Sheehan, K. and Waller, E. K. (1997). Thrombopoietin is synthesized by bone marrow stromal cells. Blood, 90, 3444–3455.
  • Cattoretti, G., Schiro, R., Orazi, A., Soligo, D. and Colombo, M. P. (1993). Bone marrow stroma in humans: antinerve growth factor receptor antibodies selectively stain reticular cells in vivo and in vitro. Blood, 81, 1726–1738.
  • Greenberger, J. S., Rothstein, L., DeFabritiis, P., Bregni, M., Bast, R., Ritz, J., Nadler, L. M., Lipton, J. M. and Sakakeeny, M. A. (1985). Effects of monoclonal antibody and complement treatment of human marrow on hematopoiesis in continuous bone marrow culture. Cancer Res., 45, 758–767.
  • Gabius, S. and Gabius, H. J. (1990). Sugar receptors of the stromal cell layer in human long-term bone marrow cultures: their presence, modulatory responses to changes in the microenvironment and potential role in cellular adhesion. Blut, 61, 232–239.
  • Charbord, P., Tamayo, E., Saeland, S., Duvert, V., Poulet, J., Gown, A. M. and Hervé, P. (1991). Granulocyte-Macrophage Colony-stimulating factor (GM-CSF) in human long-term bone marrow cultures: endogeneous production in the adherent layer and effect of exogeneous GM-CSF on granulomonopoiesis. Blood, 78, 1230–1236.
  • Charbord, P., Tippens, D., Wight, T. S., Gown, A. M. and Singer, J. W. (1987). Stromal cells from human long-term marrow cultures, but not cultured marrow fibroblasts, phagocytose horse serum constituents: studies with a monoclonal antibody that reacts with a species-specific epitope common to multiple horse serum proteins. Exp. Hematol., 15, 72–77.
  • Charbord, P., Lerat, H., Newton, I., Tamayo, E., Gown, A. M., Singer, J. W. and Herve, P. (1990). The cytoskeleton of stromal cells from human bone marrow cultures resembles that of cultured smooth muscle cells. Exp. Hematol., 18, 276–282.
  • Duband, J. L., Gimona, M., Scatena, M., Sartore, S. and Small, J. V. (1993). Calponin and SM22 as differentiation markers of smooth muscle: spatiotemporal distribution during avian embryonic development. Differentiation, 55, 1–11.
  • Sensebe, L., Deschaseaux, M., Li, J., Hervé, P. and Charbord, P. (1996). The broad spectrum of cytokine gene expression by myoid cells from the human marrow microenvironment. Stem Cells, 15, 133–143.
  • Goldberg, B. and Rabinovitch. (1988). Connective tissue p. 157–188 in “Cell and Tissue Biology. A textbook of histology”. (6th edition) Ed: Weiss, L., Urban and Schwartzenberg, Baltimore.
  • Glukhova, M. A., Frid, M. G. and Koteliansky, V. E. (1991). Phenotypic changes of human aortic smooth muscle cells during development and in the adult vessel. Am. J. Physiol., 261, 78–80.
  • Frid, M. G., Shekhonin, B. V., Koteliansky, V. E. and Gluckhova, M. A. (1992). Phenotypic changes of human smooth muscle cells during development: late expression of heavy caldesmon and calponin. Dev. Biol., 153, 185–193.
  • Glukhova, M., Koteliansky, V., Fondacci, C., Marotte, F. and Rappaport, L. (1993). Laminin variants and integrin laminin receptors in developing and adult human smooth muscle. Develop. Biol, 157, 437–447.
  • Jaffe, E. A., Minick, C. R., Adelman, B., Becker, C. G. and Nachman, R. (1976). Synthesis of basement membrane collagen by cultured human endothelial cells. J. Exp. Med., 144, 209–225.
  • Glukhova, M. A., Frid, M. G., Sekhonin, B. V., Vasilevskaya, T. D., Grunwald, J., Saginati, M. and Koteliansky, V. E. (1989). Expression of extra domain A fibronectin sequence in vascular smooth muscle cells is phenotype dependent. J. Cell Biol., 109, 357–366.
  • Belkin, V. M., Belkin, A. M. and Koteliansky, V. E. (1990). Human smooth muscle VLA-1 integrin: purification, substrate specificity, localization in aorta, and expression during development. J. Cell Biol., 111, 2159–2170.
  • Owens, G. K. (1995). Regulation of differentiation of vascular smooth muscle cells. Physiol. Reviews, 75, 487–517.
  • Glukhova, M. A., Frid, M. G. and Koteliansky, V. E. (1990). Developmental changes in expression of contractile and cytoskeletal proteins in human aortic smooth muscle. J. Biol. Chem., 265, 13042–13046.
  • Frid, M. G., Printesva, O. Y., Chiavegato, A., Faggin, E., Scattena, M., Koteliansky, V. E., Pauletto, P., Gluckhova, M. A. and Sartore, S. (1993). Myosin heavy-chain isoform composition and distribution in developing and adult human aortic smooth muscle. J. Vasc. Res., 30, 279–292.
  • Schwartz, S. M., deBlois, D. and O'Brien, E. R. M. (1995). The intima. Soil for atherosclerosis and restenosis. Cir. Res., 77, 445–465.
  • Schwartz, S. M. (1997). Smooth muscle migration in atherosclerosis and restenosis. J. Clin. Invest., 99, 2814–2817.
  • Ferrari, G., Cusella-De Angelis, G., Coletta, M., Paolucci, E., Stornaiuolo, A., Cossu, G. and Mavilio, F. (1998). Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 279, 1528–1530.
  • Wakitani, S., Saito, T. and Caplan, A. I. (1995). Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle and Nerve, 18, 1417–1426.
  • Pereira, R. F., O'Hara, M. D., Laptev, A. V., Halford, K. W., Pollard, M. D., Class, R., Simon, D., Livezey, K. and Prockop, D. J. (1998). Marrow stromal cells as a source of progenitor cells for non hematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc. Natl. Acad. Sci. USA, 95, 1142–1147.
  • Tavian, M., Coulombel, L., Luton, D., San Clemente, H., Dieterlen-Lifèvre, F. and Péault, B. (1996). Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood, 87, 67–72.
  • Sappino, A. P., Schürch, W. and Gabbiani, G. (1990). Biology of disease. Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations. Laboratory Investigation, 63, 144–161.
  • Lazard, D., Sastre, X., Frid, M. G., Glukhova, M. A., Thiery, J. P. and Koteliansky, V. E. (1993). Expression of smooth muscle-specific proteins in myoepithelium and stromal myofibroblasts of normal and malignant human breast tissue. Proc. Natl. Acad. Sci. USA, 90, 999–1003.
  • Singer, J. W., Keating, A. and Wight, T. N. (1985). The human haemopoietic microenvironment, p. 1–24 in “Recent Advances in Haematology” Ed: Hoffbrand, A. V., Churchill Livingstone, Edinburgh.
  • Takahashi, M., Keating, A. and Singer, J. W. (1985). A functional defect in irradiated adherent layers from chronic myelogenous leukemia long-term marrow cultures. Exp. Hematol., 13, 926–931.
  • Touw, I. and Löwenberg, B. (1983). No stimulative effect of adipocytes on hematopoiesis in long-term human bone marrow cultures. Blood, 61, 770–774.
  • Gimble, J. M. (1990). The function of adipocytes in the bone marrow stroma. New Biologist, 2, 304–312.
  • Li, J., Sensebe, L., Hervé, P. and Charbord, P. (1996). Non transformed colony-derived stromal cell lines from normal human marrows. III. The maintenance of hematopoiesis form CD34+ cell populations. Exp. Hematol., [in press].
  • Breems, D. A., Blokland, E. A. W., Neben, S. and Ploemacher, R. E. (1994). Frequency analysis of human primitive haematopoietic stem cell subsets using a cobblestone area forming cell assay. Leukemia, 8, 1095–1104.
  • Stoflet, E. S., Schmidt, L. J., Elder, P. K., Korf, G. M., Foster, D. N., Strauch, A. R. and Getz, M. J. (1992). Activation of a muscle-specific actin gene promoter in serum stimulated fibroblasts. Mol. Biol. Cell, 3, 1073–1083.
  • Kim, J. H., Bushel, P. R. and Kumar, C. C. (1993). Smooth muscle α-actin promoter activity is induced by serum stimulation of fibroblast cells. Biochem. Biophys. Res. Commun., 190, 1115–1121.
  • Sensebé, L., Mortensen, B. T., Fixe, P., Hervé, P. and Charbord, P. (1997). Cytokines active on granulomonopoiesis: release and consumption by human marrow myoid cells. Brit. J. Haematol., [in press].
  • Carpenter, G. and Wahl, M. I. (1991). The epidermal growth factor family, p. 69–72 in “Peptides growth factors and their receptors I”. Ed: Sporn, M. B., Roberts, A. B., Springer-Verlag, New York.
  • Rechler, M. M. and Nisoley, S. P. (1991). Insulin-like growth factors, p. 263–368 in “Peptides growth factors and their receptors I”. Ed: Sporn, M. B., Roberts, A. B., Springer-Verlag, New York.
  • Bitterman, P. B., Rennard, S. I., Adelberg, S. and Crystal, R. G. (1983). Role of fibronectin as a growth factor for fibroblasts. J. Cell Biol., 97, 1925–1932.
  • Vyalov, S., Desmoulière, A. and Gabbiani, G. (1993). GMCSF-induced granulation tissue formation: relationships between macrophage and myofibroblast accumulation. Virchows Archiv B. Cell Pathol., 63, 231–239.
  • Desmoulière, A., Geinoz, A., Gabbiani, F. and Gabbiani, G. (1993). Transforming growth factor-β1 induces α-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol., 122, 103–111.
  • Ronnov-Jessen, L. and Petersen, O. W. (1993). Induction of α-smooth muscle actin by transforming growth factor-β1 in quiescent human breast gland fibroblasts. Lab. Invest., 68, 696–707.
  • Arciniegas, E., Sutton, A. B., Allen, T. D. and Schor, A. M. (1992). Transforming growth factor beta 1 promotes the differentiation of endothelial cells into smooth muscle-like cells in vitro. J. Cell Sci., 103, 521–529.
  • Bulabois, C. E., Yerly-Motta, V., Mortensen, B. T., Fixe, P., Remy-Martin, J. P., Hervé, P., Tiberghien, P. and Charbord, P. (1998). Retroviral-mediated marker gene transfer in hematopoiesis-supportive marrow stromal cells. J. Hematother., 7, 225–239.
  • Novak, J. P. and Stewart, C. C. (1991). Stochastic versus deterministic in haemopoiesis: what is what? Br. J. Haematol, 78, 149–154.
  • Schmitt-Gräff, A., Skalli, O. and Gabbiani, G. (1989). Alpha-smooth muscle actin is expressed in a subset of bone marrow stromal cells is normal and pathological conditions. Virchows Archiv B Cell Pathol., 57, 291–302.
  • Westen, H. and Bainton, D. F. (1979). Association of alkaline-phosphatase-positive reticulum cells in bone marrow with granulocytic precursors. J. Exp. Med., 150, 919–937.
  • Masek, L. C. and Sweetenham, J. W. (1994). Isolation and culture of endothelial cells from human bone marrow. Br. J. Haematol., 88, 855–865.
  • Rafii, S., Shapiro, F., Rimarachin, J., Nachman, R. L., Ferris, B., Weksler, B., Moore, M. A. S. and Asch, A. S. (1994). Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion. Blood, 84, 10–19.
  • Rafii, S., Shapiro, F., Pettengell, R., Ferris, B., Nachman, R. L., Moore, M. A. S. and Asch, A. S. (1995). Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood, 86, 3353–3363.
  • Nicosia, R. F. and Tuszynski, G. P. (1994). Matrix-bound thrombospondin promotes angiogenesis in vitro. J. Cell Biol., 124, 183–193.
  • Montesano, R., Pepper, M. S. and Orci, L. (1993). Paracrine induction of angiogenesis in vitro by Swiss 3T3 fibroblasts. J. Cell Science, 105, 1013–1024.
  • Jiang, B., Bezhadian, M. A. and Caldwell, R. B. (1995). Astrocytes modulate retinal vasculogenesis: effects on endothelial cell differentiation. Glia, 15, 1–10.
  • Reilly, J. T., Nash, J. R. G., Mackie, M. J. and McVerry, B. A. (1985). Endothelial cell proliferation in myelofibrosis. Br. J. Haematol., 60, 625–630.
  • Lichtman, M. A. (1984). The relationship of stromal cells to hemopoietic cells in marrow, p. 3–29 in “Long-Term Bone Marrow Culture”, Alan R. Liss, New York.
  • Wineman, J., Moore, K., Lemischka, I. and Müller-Sieburg, C. (1996). Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells. Blood, 87, 4082–4090.
  • Friedrich, C., Zausch, E., Sugrue, S. P. and Gutierrez-Ramos, J. C. (1996). Hematopoietic supportive functions of mouse bone marrow and fetal liver microenvironment: dissection of granulocyte, B-lymphocyte, and hematopoietic progenitor support at the stroma cell clone level. Blood, 87, 4596–4606.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.