82
Views
7
CrossRef citations to date
0
Altmetric
Hemoglobin Disorders

Intraerythrocytic Iron Chelation: A New Therapy for Thalassemia?

Pages 73-89 | Received 24 Nov 2000, Accepted 29 Dec 2000, Published online: 13 Jul 2016

References

  • Weatherall, D. J. and Clegg, J. B. (1996). Thalassemia—a global public health problem, Nat Med, 2, 847–849.
  • Weatherall, D. J. and Clegg, J. B. (1969). The pattern of disordered haemoglobin synthesis in homozygous andheterozygous β-thalassaemia, Br J Haemat, 16, 251–267.
  • Ritchey, A. K., Hoffman, R., Coupal, E., Floyd, V., Pearson, H. A. and Forget, B. G. (1981). Imbalanced globin chain synthesis in cultured erythroid progenitor cells from thalassemic bone marrow and peripheral blood, Blood, 57, 788–793.
  • Schwartz, E. (1974). Abnormal globin synthesis in thalassemic red cells, Semin Hematol, 11, 549–567.
  • Vigi, V., Volpato, S. Gaburro, D., Conconi, F., Bargellesi, A. and Pontremoli, S. (1969). The correlation between red-cell survival and excess of α-globin synthesis in β-thalassaemia, Br J Haemat, 16, 25–30.
  • Blendis, L. M., Modell, C. B., Bowdler, A. J. and Williams, R. (1974). Some effects of splenectomy in thalassaemia major, Br J Haematol, 28, 77–87.
  • Pippard, M. J. (1994). Secondary iron overload. In Iron Metabolism in Health & Disease, edited by J. H. Brock, J. W. Halliday, M. J. Pippard and L. W. Powell, pp. 271–309, London. W. B. Saunders.
  • Beard, M. E., Necheles, T. F. and Allen, D. M. (1967). Intensive transfusion therapy in thalassemia major, Pediatrics, 40, 911–915.
  • Piomelli, S., Danoff, S. J., Becker, M. H., Lipera, M. J. and Travis, S. F. (1969). Prevention of bone malformations and cardiomegaly in Cooley's anemia by early hypertransfusion regimen, Ann N Y Acad Sci, 165, 427–436.
  • Pearson, H. A. and O'Brien, R. T. (1975). The management of thalassemia major, Semin Hematol, 12, 255–265.
  • Piomelli, S., Karpatkin, M. H., Arzanian, M., Zamani, M., Becker, M. H., Geneiser, N., Danoff, S. J. and Kuhns, W. J. (1974). Hypertransfusion regimen in patients with Cooley's anemia, Ann N Y Acad Sci, 232, 186–192.
  • Bannerman, R. M., Keusch, G., Kreimer-Birnbaum, M., Vance, V. K. and Vaughan, S. (1967). Thalassemia intermedia, with iron overload, cardiac failure, diabetes mellitus, hypopituitarism and porphyrinuria, Am J Med, 42, 476–486.
  • Orsini, A., Giraud, F., Bernard, P. and Passeron, P. (1965). Use of desferrioxamine B in the treatment of post-transfusion hypersiderosis, Mars Med, 102, 591–595.
  • Propper, R. D., Shurin, S. B. and Nathan, D. G. (1976). Reassessment of the use of desferrioxamine B in iron overload, N Engl J Med, 294, 1421–1423.
  • Whitten, C. F., Gibson, G. W., Good, M. H., Goodwin, J. F. and Brough, A. J. (1965). Studies in acute iron poisoning. I. Desferrioxamine in the treatment of acute iron poisoning: clinical observations, experimental studies, and theoretical considerations, Pediatrics, 36, 322–335.
  • Summers, M. R., Jacobs, A., Tudway, D., Perera, P. and Ricketts, C. (1979). Studies in desferrioxamine and ferrioxamine metabolism in normal and iron-loaded subjects, Br J Haematol, 42, 547–555.
  • Hallaway, P. E., Eaton, J. W., Panter, S. S. and Hedlund, B. E. (1989). Modulation of deferoxamine toxicityand clearance by covalent attachment to biocompatible polymers, Proc Natl Acad Sci USA, 86, 10108–10112.
  • Olivieri, N. F. and Brittenham, G. M. (1997). Iron-chelating therapy and the treatment of thalassemia, Blood, 89, 739–761.
  • Olivieri, N. F., Buncic, J. R., Chew, E., Gallant, T., Harrison, R. V., Keenan, N., Logan, W., Mitchell, D., Ricci, G. and Skarf, B. (1986). Visual and auditory neurotoxicity in patients receiving subcutaneous deferoxamine infusions, N Engl J Med, 314, 869–873.
  • Giardina, P. J. and Grady, R. W. (1995). Chelation therapy in β-thalassemia: the benefits and limitations of desferrioxamine, Semin Hematol, 32, 304–312.
  • Olivieri, N. F. (1996). Long-term therapy with defiprone, Acta Haematol, 95, 37–48.
  • Jacob, H. S. and Lux, S. E. (1968). Degradation of membrane phospholipids and thiols in peroxide hemolysis. Studies in vitamin E deficiency, Blood, 32, 549–568.
  • Kuross, S. A. and Hebbel, R. P. (1988). Nonheme iron in sickle erythrocyte membranes: Association with phospholipids and potential role in lipid peroxidation, Blood, 72, 1278–1285.
  • Weed, R. (1970). The importance of erythrocyte deformability, Am J Med, 49, 147–150.
  • Scott, M. D., Rouyer-Fessard, P., Ba, M. S., Lubin, B. H. and Beuzard, Y. (1992). α- and β-haemoglobin chain induced changes in normal erythrocyte deformability: Comparison to β thalassaemia intermedia and HbH disease, Br J Haem, 80, 519–526.
  • Smith, K. A. and Mengel, C. E. (1968). Association of iron dextran induced hemolysis and lipid peroxidationin mice, J Lab Clin Med, 72, 505–510.
  • Rachmilewitz, E. A. (1976). The role of intracellular hemoglobin precipitation, low MHCH, and iron overloadon red blood cell membrane peroxidation in thalassemia, Birth Defects: Original Articles Series, 12(8), 123–133.
  • Kahane, I. and Rachmilewitz, E. A. (1976). Alterations in the red cell membrane and the effect of vitamin E on osmotic fragility in β-thalassemia major, Isr J Med Sci, 12, 11–15.
  • Wallace, W. J. and Caughey, W. S. (1979). Superoxide as a participant in the chemistry of oxyhemoglobin. In Biochemical and Clinical Aspects of Oxygen, edited by W.S. Caughey, p. 69, New York. Academic Press.
  • Yataganas, X. and Fessas, P. (1969). The pattern of hemoglobin precipitation in thalassemia and its significance, Ann NY Acad Sci, 165, 270–277.
  • Cividalli, G., Kerem, H. and Rachmilewitz, E. A. (1980). Globin synthesis in severe and intermediate homozygous β-thalassemia in Israel, Ann NY Acad Sci, 344, 132–140.
  • Weatherall, D. J. and Clegg, J. B. (1973). The Thalassaemia Syndromes, 2nd edn, Oxford. Blackwell Scientific Publications.
  • Scott, M. D., Rouyer-Fessard, P., Lubin, B. H. and Beuzard, Y. (1990). Entrapment of purified α-hemoglobin chains in normal erythrocytes: A model for β thalassemia, J Biol Chem, 265, 17953–17959.
  • Bunn, H. F. and Jandl, J. H. (1967). Exchange of heme among hemoglobins and between hemoglobin and albumin, J Biol Chem, 243, 465–475.
  • Hebbel, R. P., Eaton, J. W., Balasingam, M. and Steinberg, M. H. (1982). Spontaneous oxygen radical generation by sickle erythrocytes, J Clin Invest, 70, 1253–1259.
  • Scott, M. D., van den Berg, J. J. M., Repka, T., Rouyer-Fessard, P., Hebbel, R. P., Beuzard, Y. and Lubin, B. H. (1993). Effect of excess α-hemoglobin chains on cellular and membrane oxidation in model β thalassemic erythrocytes, J Clin Invest, 91, 1706–1712.
  • Scott, M. D. and Eaton, J. W. (1995). Thalassaemic erythrocytes: Cellular suicide arising from iron and glutathione-dependent oxidation reactions? Br J Haem, 91, 811–819.
  • Scott, M. D., Yang, L., Ulrich, P. and Shupe, T. (1997). Pharmacologic interception of heme: a potential therapeutic strategy for the treatment of β thalassemia? Redox Report, 3, 159–167.
  • Kuypers, F. A., Schott, M. A. and Scott, M. D. (1996). Phospholipid composition in model β thalassemic erythrocytes, Am J Hematol, 51, 45–54.
  • Kuross, S. A., Rank, B. H. and Hebbel, R. P. (1988). Excess heme in sickle erythrocyte inside-out membranes: Possible role in thiol oxidation, Blood, 72, 876–882.
  • Kuross, S. A., Rank, B. H. and Hebbel, R. P. (1989). Iron compartments associated with sickle RBC membranes: A mechanism for the targeting of oxidative damage. In The Red Cell: Seventh Ann Arbor Conference, edited by G. J. Brewer and J. W. Eaton, pp. 601–613, A.R. Liss, New York.
  • Rank, B. H., Carlsson, J. and Hebbel, R. P. (1985). Abnormal redox status of membrane-protein thiols in sickle erythrocytes, J Clin Invest, 75, 1531–1537.
  • Repka, T. and Hebbel, R. P. (1991). Hydroxyl radical formation by sickle erythrocyte membranes: Role of pathologic iron deposits and cytoplasmic reducing agents, Blood, 78, 2753–2758.
  • Repka, T., Shalev, O., Reddy, R., Yuan, J., Abrahamov, A., Rachmilewitz, E. A., Low, P. S. and Hebbel, R. P. (1993). Nonrandom association of free iron with membranes of sickle and β-thalassemic erythrocytes, Blood, 82, 3204–3210.
  • Pickart, L. and Thaler, M. (1980). Growth-modulating tripeptide (Glycylhistidyllysine): association with copper and iron in plasma, and stimulation of adhesiveness and growth of hepatoma cells in culture by tripeptidemetal ion complexes, J Cellular Physiol, 102, 129–139.
  • Pickart, L. and Lovejoy, S. (1987). Biological activity of human plasma copper-binding growth factor glycyl-L-histidyl-L-lysine, Methods in Enzymology, 147, 314–328.
  • Peterson, C. M., Graziano, J. H., Grady, R. W., Jones, R. L., Vlassara, H. V., Canale, V. C., Miller, D. R. and Cerami, A. (1976). Chelation studies with 23-dihydroxy-benzoic acid in patients with β-thalassaemia major, Br J Haemat, 33, 477–485.
  • Grady, R. W., Graziano, J. H., White, G. P., Jacobs, A. and Cerami, A. (1978). The development of new iron-chelating drugs, II, J Pharmacol Exp Ther, 205, 565–575.
  • Peterson, C. M., Graziano, J. H., Grady, R. W., Jones, R. L., Markenson, A., Lavi, U., Canale, V., Gray, G. F., Cerami, A. and Miller, D. R. (1979). Chelation therapy in β-thalassemia major: a one-year double blind study of 2,3-dihydroxybenzoic acid, Exp Hematol, 7, 74–80.
  • Brittenham, G. M. (1990). Pyridoxal isonicotinoyl hydrazone: An effective iron-chelator after oral administration, Seminars in Hematology, 27, 112–116.
  • Baker, E. (1988). Biologic screens for iron chelators, Birth Defects, 23, 49–61.
  • Ponka, P., Grady, R. W., Wilczynska, A. and Schulman, H. M. (1984). The effect of various chelating agents on the mobilization of iron from reticulocytes in the presence and absence of pyridoxal isonicotinoyl hydrazone, Biochim Biophys Acta, 802, 477–489.
  • Richardson, D. R., Tran, E. H. and Ponka, P. (1995). The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents, Blood, 86, 4295–4306.
  • Richardson, D. R. and Ponka, P. (1998). Pyridoxal isonicotinoyl hydrazone and its analogs: potential orally effective iron-chelating agents for the treatment of iron overload disease, J Lab Clin Med, 131, 306–315.
  • Blaha, K., Cikrt, M., Nerudova, J., Fomuskova, H. and Ponka, P. (1998). Biliary iron excretion in rats following treatment with analogs of pyridoxal isonicotinoyl hydrazone, Blood, 91, 4368–4372.
  • Bergeron, R. J., Wiegand, J. and Brittenham, G. M. (1998). HBED: A potential alternative to deferoxamine for iron-chelating therapy, Blood, 91, 1446–1452.
  • Bergeron, R. J., Wiegand, J. and Brittenham, G. M. (1999). HBED: the continuing development of a potential alternative to deferoxamine for iron-chelating therapy, Blood, 93, 370–375.
  • van Zyl, R. L., Havlik, I., Hempelmann, E., MacPhail, A. P. and McNamara, L. (1993). Malaria pigment and extracellular iron. Possible target for iron chelating agents, Biochem Pharmacol, 45, 1431–1436.
  • Breuer, W., Epsztejn, S. and Cabantchik, Z. I. (1995). Iron acquired from transferrin by K562 cells is delivered into a cytoplasmic pool of chelatable iron(II), J Biol Chem, 270, 24209–24215.
  • Lund, L. G. and Aust, A. E. (1990). Iron mobilization from asbestos by chelators and ascorbic acid, Arch Biochem Biophys, 278, 61–64.
  • Chevion, M. (1991). Protection against free radical-induced and transition metal-mediated damage: the use of “pull” and “push” mechanisms, Free Radic Res Commun, 12–13 (part 2), 691–696.
  • Hider, R. C., Singh, S., Porter, J. B. and Huehns, E. R. (1990). The development of hydroxypyridin-4-ones as orally active iron chelators, Ann N Y Acad Sci, 612, 327–338.
  • Shalev, O., Repka, T., Goldfarb, A., Grinberg, L., Abrahamov, A., Olivieri, N. F., Rachmilewitz, E. A. and Hebbel, R. P. (1995). Deferiprone (L1) chelates pathologic iron deposits from membranes of intact thalassemic and sickle red blood cells both in vitro and in vivo, Blood, 86, 2008–2013.
  • Hartley, A. and Rice-Evans, C. (1992). The chelation of nonheme iron within sickle erythrocytes by the hydroxy-pyridinone chelator CP094, Arch Biochem Biophys, 297, 377–382.
  • Olivieri, N. F., Brittenham, G. M., McLaren, C. E., Templeton, D. M., Cameron, R. G., McClelland, R. A., Burt, A. D. and Fleming, K. A. (1998). Long-term safety and effectiveness of iron-chelation therapy with deferiprone for thalassemia major, N Engl J Med, 339, 417–423.
  • Scott, M. D., Yang, L., Ulrich, P. and Shupe, T. (1997). Pharmacologic interception of heme: a potential therapeutic strategy for the treatment of β thalassemia? Redox Report, 3, 159–167.
  • Visca, P., Ciervo, A., Sanfilippo, V. and Orsi, N. (1993). Iron-regulated salicylate synthesis by Pseudomonas spp., J Gen Microbiol, 139, 1995–2001.
  • Dinis, T. C., Maderia, V. M. and Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers, Arch Biochem Biophys, 315, 161–169.
  • Zanocco, A. L., Pavez, R., Videla, L. A. and Lissi, E. A. (1989). Antioxidant capacity of diethyldithiocarbamate in a metal independent lipid peroxidative process, Free Radio Biol Med, 7, 151–156.
  • Meshnick, S. R., Scott, M. D., Lubin, B. H., Ranz, A. and Eaton, J. W. (1990). The antimalarial activity of diethyldithiocarbamate: Potentiation by copper, Biochem Pharm, 40, 213–216.
  • Boyd, V. L., Harbell, J. W., O'Connor, R. J. and McGown, E. L. (1989). 2,3-Dithioerythritol, a possible newarsenic antidote, Chem Res Toxicol, 2, 301–306.
  • Sartiano, G. P., Levine, G. and Boggs, S. S. (1980). Influence of dimercaprol (2,3-dimercapto-1-propanol) on the pharmacokinetics of 111In-bleomycin in the P1798 lymphoma-bearing BALB/c mouse, Oncology, 37, 120–124.
  • Akanmu, D., Cecchini, R., Aruoma, O. I. and Halliwell, B. (1991). The antioxidant action of ergothioneine, Arch Biochem Biophys, 288, 10–16.
  • River, Y., Honigman, S., Gomori, J. M. and Reches, A. (1994). Superficial hemosiderosis of the central nervous system, Mov Disord, 9, 559–562.
  • Muller, U. and Krieglstein, J. (1995). Prolonged pretreatment with α-lipoic acid protects cultured neurons against hypoxic, glutamate-, or iron-induced injury, J Cereb Blood Flow Metab, 15, 624–630.
  • Hershko, C., Grady, R. W. and Link, G. (1982). Evaluation of iron-chelating agents in an in vivo system: potential usefulness of EHPG, a powerful iron-chelating drug, Br J Haematol, 51, 251–260.
  • Hershko, C., Grady, R. W. and Link, G. (1984). Phenolic ethylenediamine derivatives: a study of orally effective iron chelators, J Lab Clin Med, 103, 337–346.
  • Ewe, K. (1968). Modification of iron absorption in the small intestine by complex formation with 8-hydroxyquinoline and its sulfonate. Perfusion studies of the human jejunum, Klin Wochenschr, 46, 296–300.
  • Scott, M. D., Kuypers, F. A., Bütikofer, P., Bookchin, R. M., Ortiz, O. and Lubin, B. H. (1990). Effect of osmotic lysis and resealing on red cell structure and function, J Lab Clin Med, 115, 470–480.
  • Scott, M. D. (1992). Entrapment of purified α-hemoglobin chains in normal erythrocytes as a model of human β thalassemia. In The Use of Resealed Erythrocytes as Carriers and Bioreactors, edited by M. Magnani and J. R. DeLoach, pp. 139–148, New York. Plenum.
  • Browne, P. V., Shalev, O., Kuypers, F. A., Brugnara, C., Solovey, A., Mohandas, N., Schrier, S. L. and Hebbel, R. P. (1997). Removal of erythrocyte membrane iron in vivo ameliorates the pathobiology of murine thalassemia, J Clin Invest, 100, 1459–1464.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.