Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 21, 2018 - Issue 1
528
Views
6
CrossRef citations to date
0
Altmetric
Original Article

How does early maternal separation and chronic stress in adult rats affect the immunoreactivity of serotonergic neurons within the dorsal raphe nucleus?

, &
Pages 59-68 | Received 11 Apr 2017, Accepted 28 Oct 2017, Published online: 20 Nov 2017

References

  • Abrams, J.K., Johnson, P.L., Hollis, J.H., & Lowry, C.A. (2004). Anatomic and functional topography of the dorsal raphe nucleus. Annals of the New York Academy of Sciences, 1018, 46–57. doi:10.1196/annals.1296.005
  • Ahmad, A., Rasheed, N., Banu, N., & Palit, G. (2010). Alterations in monoamine levels and oxidative systems in frontal cortex, striatum, and hippocampus of the rat brain during chronic unpredictable stress. Stress, 13, 355–364. doi:10.3109/10253891003667862
  • Altieri, S.C., Garcia-Garcia, A.L., Leonardo, E.D., & Andrews, A.M. (2013). Rethinking 5-HT1A receptors: Emerging modes of inhibitory feedback of relevance to emotion-related behavior. ACS Chemical Neuroscience, 4, 72–83. doi:10.1021/cn3002174
  • Andersen, S.L. (2015). Exposure to early adversity: Points of cross-species translation that can lead to improved understanding of depression. Development and Psychopathology, 27, 477–491. doi:10.1017/S0954579415000103
  • Bambico, F.R., Nguyen, N.T., & Gobbi, G. (2009). Decline in serotonergic firing activity and desensitization of 5-HT1A autoreceptors after chronic unpredictable stress. European Neuropsychopharmacology, 19, 215–228. doi:10.1016/j.euroneuro.2008.11.005
  • Belzung, C., Willner, P., & Philippot, P. (2015). Depression: From psychopathology to pathophysiology. Current Opinion in Neurobiology, 30, 24–30. doi:10.1016/j.conb.2014.08.013
  • Bock, J., Rether, K., Groger, N., Xie, L., & Braun, K. (2014). Perinatal programming of emotional brain circuits: An integrative view from systems to molecules. Frontiers in Neuroscience, 8, 11. doi:10.3389/fnins.2014.00011
  • Bouwknecht, J.A., Spiga, F., Staub, D.R., Hale, M.W., Shekhar, A., & Lowry, C.A. (2007). Differential effects of exposure to low-light or high-light open-field on anxiety-related behaviors: Relationship to c-Fos expression in serotonergic and non-serotonergic neurons in the dorsal raphe nucleus. Brain Research Bulletin, 72, 32–43. doi:10.1016/j.brainresbull.2006.12.009
  • Bravo, J.A., Dinan, T.G., & Cryan, J.F. (2014). Early-life stress induces persistent alterations in 5-HT1A receptor and serotonin transporter mRNA expression in the adult rat brain. Frontiers in Molecular Neuroscience, 7, 24. doi:10.3389/fnmol.2014.00024
  • Brink, C.B., Harvey, B.H., & Brand, L. (2006). Tianeptine: A novel atypical antidepressant that may provide new insights into the biomolecular basis of depression. Recent Patents on Cns Drug Discovery, 1, 29–41. doi:10.2174/157488906775245327
  • Castanon, N., Konsman, J.P., Medina, C., Chauvet, N., & Dantzer, R. (2003). Chronic treatment with the antidepressant tianeptine attenuates lipopolysaccharide-induced Fos expression in the rat paraventricular nucleus and HPA axis activation. Psychoneuroendocrinology, 28, 19–34. doi:10.1016/S0306-4530(02)00005-7
  • Crawford, L.K., Craige, C.P., & Beck, S.G. (2010). Increased intrinsic excitability of lateral wing serotonin neurons of the dorsal raphe: A mechanism for selective activation in stress circuits. Journal of Neurophysiology, 103, 2652–2663. doi:10.1152/jn.01132.2009
  • Chirita, A.L., Gheorman, V., Bondari, D., & Rogoveanu, I. (2015). Current understanding of the neurobiology of major depressive disorder. Romanian Journal of Morphology and Embryology, 56, 651–658.
  • Daskalakis, N.P., Oitzl, M.S., Schachinger, H., Champagne, D.L., & de Kloet, E.R. (2012). Testing the cumulative stress and mismatch hypotheses of psychopathology in a rat model of early-life adversity. Physiology & Behavior, 106, 707–721. doi:10.1016/j.physbeh.2012.01.015
  • de Kloet, E.R., Joels, M., & Holsboer, F. (2005). Stress and the brain: From adaptation to disease. Nature Reviews. Neuroscience, 6, 463–475. doi:10.1038/nrn1683
  • Delbende, C., Contesse, V., Mocaer, E., Kamoun, A., & Vaudry, H. (1991). The novel antidepressant, tianeptine, reduces stress-evoked stimulation of the hypothalamo-pituitary-adrenal axis. European Journal of Pharmacology, 202, 391–396. doi:10.1016/0014-2999(91)90284-W
  • Della, F.P., Abelaira, H.M., Reus, G.Z., Santos, M.A., Tomaz, D.B., Antunes, A.R., … Quevedo, J. (2013). Treatment with tianeptine induces antidepressive-like effects and alters the neurotrophin levels, mitochondrial respiratory chain and cycle Krebs enzymes in the brain of maternally deprived adult rats. Metabolic Brain Disease, 28, 93–105. doi:10.1007/s11011-012-9375-x
  • Donner, N.C., Siebler, P.H., Johnson, D.T., Villarreal, M.D., Mani, S., Matti, A.J., & Lowry, C.A. (2016). Serotonergic systems in the balance: CRHR1 and CRHR2 differentially control stress-induced serotonin synthesis. Psychoneuroendocrinology, 63, 178–190. doi:10.1016/j.psyneuen.2015.09.024
  • Dragunow, M., & Faull, R. (1989). The use of c-fos as a metabolic marker in neuronal pathway tracing. Journal of Neuroscience Methods, 29, 261–265. doi:10.1016/0165-0270(89)90150-7
  • Gardner, K.L., Thrivikraman, K.V., Lightman, S.L., Plotsky, P.M., & Lowry, C.A. (2005). Early life experience alters behavior during social defeat: Focus on serotonergic systems. Neuroscience, 136, 181–191. doi:10.1016/j.neuroscience.2005.07.042
  • Gartside, S.E., Johnson, D.A., Leitch, M.M., Troakes, C., & Ingram, C.D. (2003). Early life adversity programs changes in central 5-HT neuronal function in adulthood. The European Journal of Neuroscience, 17, 2401–2408. doi:10.1046/j.1460-9568.2003.02668.x
  • Gassaway, M.M., Rives, M.L., Kruegel, A.C., Javitch, J.A., & Sames, D. (2014). The atypical antidepressant and neurorestorative agent tianeptine is a mu-opioid receptor agonist. Translational Psychiatry, 4, e411. doi:10.1038/tp.2014.30
  • Goel, N., Innala, L., & Viau, V. (2014). Sex differences in serotonin (5-HT) 1A receptor regulation of HPA axis and dorsal raphe responses to acute restraint. Psychoneuroendocrinology, 40, 232–241. doi:10.1016/j.psyneuen.2013.11.020
  • Graeff, F.G., Guimaraes, F.S., De Andrade, T.G., & Deakin, J.F. (1996). Role of 5-HT in stress, anxiety, and depression. Pharmacology, Biochemistry, and Behavior, 54, 129–141. doi:10.1016/0091-3057(95)02135-3
  • Griebel, G., Simiand, J., Steinberg, R., Jung, M., Gully, D., Roger, P., … Soubrie, P. (2002). 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylp henyl)ethyl]5-methyl-N-(2-propynyl)-1, 3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor(1) receptor antagonist. II. Characterization in rodent models of stress-related disorders. Journal of Pharmacology and Experimental Therapeutics, 301, 333–345. doi:10.1124/jpet.301.1.333
  • Gupta, D., Radhakrishnan, M., & Kurhe, Y. (2014). 5HT3 receptor antagonist (ondansetron) reverses depressive behavior evoked by chronic unpredictable stress in mice: Modulation of hypothalamic-pituitary-adrenocortical and brain serotonergic system. Pharmacology Biochemistry and Behavior, 124, 129–136. doi:10.1016/j.pbb.2014.05.024
  • Haase, J., & Brown, E. (2015). Integrating the monoamine, neurotrophin and cytokine hypotheses of depression-a central role for the serotonin transporter? Pharmacology: Therapeutics, 147, 1–11. doi:10.1016/j.pharmthera.2014.10.002
  • Hale, M.W., & Lowry, C.A. (2011). Functional topography of midbrain and pontine serotonergic systems: Implications for synaptic regulation of serotonergic circuits. Psychopharmacology (Berl), 213, 243–264. doi:10.1007/s00213-010-2089-z
  • Hale, M.W., Shekhar, A., & Lowry, C.A. (2012). Stress-related serotonergic systems: Implications for symptomatology of anxiety and affective disorders. Cellular and Molecular Neurobiology, 32, 695–708. doi:10.1007/s10571-012-9827-1
  • Hennessy, M.B., Kaiser, S., Tiedtke, T., & Sachser, N. (2015). Stability and change: Stress responses and the shaping of behavioral phenotypes over the life span. Frontiers in Zoology, 12, S18. doi:10.1186/1742-9994-12-S1-S18
  • Herman, J.P., Ostrander, M.M., Mueller, N.K., & Figueiredo, H. (2005). Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 29, 1201–1213. doi:10.1016/j.pnpbp.2005.08.006
  • Hollis, J.H., Evans, A.K., Bruce, K.P., Lightman, S.L., & Lowry, C.A. (2006). Lipopolysaccharide has indomethacin-sensitive actions on Fos expression in topographically organized subpopulations of serotonergic neurons. Brain, Behavior, and Immunity, 20, 569–577. doi:10.1016/j.bbi.2006.01.006
  • Johnson, P., Lowry, C., Truitt, W., & Shekhar, A. (2008). Disruption of GABAergic tone in the dorsomedial hypothalamus attenuates responses in a subset of serotonergic neurons in the dorsal raphe nucleus following lactate-induced panic. Journal of Psychopharmacology, 22, 642–652. doi:10.1177/0269881107082900
  • Kim, S.J., Park, S.H., Choi, S.H., Moon, B.H., Lee, K.J., Kang, S.W., … Shin, K.H. (2006). Effects of repeated tianeptine treatment on CRF mRNA expression in non-stressed and chronic mild stress-exposed rats. Neuropharmacology, 50, 824–833. doi:10.1016/j.neuropharm.2005.12.003
  • Kim, Y.J., Shin, M.C., Kim, S.A., Chung, J.H., Kim, E.H., & Kim, C.J. (2002). Modulation of tianeptine on ion currents induced by inhibitory neurotransmitters in acutely dissociated dorsal raphe neurons of Sprague-Dawley rats. European Neuropsychopharmacology, 12, 417–425. doi:10.1016/S0924-977X(02)00054-8
  • Korosi, A., Veening, J.G., Kozicz, T., Henckens, M., Dederen, J., Groenink, L., … Roubos, E.W. (2006). Distribution and expression of CRF receptor 1 and 2 mRNAs in the CRF over-expressing mouse brain. Brain Research, 1072, 46–54. doi:10.1016/j.brainres.2005.12.034
  • Kuroda, Y., Watanabe, Y., & McEwen, B.S. (1994). Tianeptine decreases both serotonin transporter mRNA and binding sites in rat brain. European Journal of Pharmacology, 268, R3–R5. doi:10.1016/0922-4106(94)90127-9
  • Lajud, N., Roque, A., Cajero, M., Gutierrez-Ospina, G., & Torner, L. (2012). Periodic maternal separation decreases hippocampal neurogenesis without affecting basal corticosterone during the stress hyporesponsive period, but alters HPA axis and coping behavior in adulthood. Psychoneuroendocrinology, 37, 410–420. doi:10.1016/j.psyneuen.2011.07.011
  • Lin, Y.E., Lin, S.H., Chen, W.C., Ho, C.T., Lai, Y.S., Panyod, S., & Sheen, L.Y. (2016). Antidepressant-like effects of water extract of Gastrodia elata Blume in rats exposed to unpredictable chronic mild stress via modulation of monoamine regulatory pathways. Journal of Ethnopharmacology, 187, 57–65. doi:10.1016/j.jep.2016.04.032
  • Maier, S.F., & Watkins, L.R. (2005). Stressor controllability and learned helplessness: The roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neuroscience & Biobehavioral Reviews, 29, 829–841. doi:10.1016/j.neubiorev.2005.03.021
  • McEwen, B.S., Eiland, L., Hunter, R.G., & Miller, M.M. (2012). Stress and anxiety: structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology, 62, 3–12. doi:10.1016/j.neuropharm.2011.07.014
  • McEwen, B.S., & Gianaros, P.J. (2011). Stress- and allostasis-induced brain plasticity. Annual Review of Medicine, 62, 431–445. doi:10.1146/annurev-med-052209-100430
  • Meloni, E.G., Reedy, C.L., Cohen, B.M., & Carlezon, W.A. Jr. (2008). Activation of raphe efferents to the medial prefrontal cortex by corticotropin-releasing factor: Correlation with anxiety-like behavior. Biological Psychiatry, 63, 832–839. doi:10.1016/j.biopsych.2007.10.016
  • Michelsen, K.A., Prickaerts, J., & Steinbusch, H.W. (2008). The dorsal raphe nucleus and serotonin: Implications for neuroplasticity linked to major depression and Alzheimer's disease. Progress in Brain Research, 172, 233–264. doi:10.1016/S0079-6123(08)00912-6
  • Monroe, S.M., & Simons, A.D. (1991). Diathesis-stress theories in the context of life stress research: Implications for the depressive disorders. Psychological Bulletin, 110, 406–425. doi:10.1037/0033-2909.110.3.406
  • Nishi, M., Horii-Hayashi, N., & Sasagawa, T. (2014). Effects of early life adverse experiences on the brain: Implications from maternal separation models in rodents. Frontiers in Neuroscience, 8, 166. doi:10.3389/fnins.2014.00166
  • Ogawa, T., Mikuni, M., Kuroda, Y., Muneoka, K., Mori, K.J., & Takahashi, K. (1994). Periodic maternal deprivation alters stress response in adult offspring: potentiates the negative feedback regulation of restraint stress-induced adrenocortical response and reduces the frequencies of open field-induced behaviors. Pharmacology, Biochemistry, and Behavior, 49, 961–967. doi:10.1016/0091-3057(94)90250-X
  • Ohta, K., Miki, T., Warita, K., Suzuki, S., Kusaka, T., Yakura, T., … Takeuchi, Y. (2014). Prolonged maternal separation disturbs the serotonergic system during early brain development. International Journal of Developmental Neuroscience, 33, 15–21. doi:10.1016/j.ijdevneu.2013.10.007
  • Oosterhof, C.A., El Mansari, M., Merali, Z., & Blier, P. (2016). Altered monoamine system activities after prenatal and adult stress: A role for stress resilience? Brain Research, 1642, 409–418. doi:10.1016/j.brainres.2016.04.032
  • Own, L.S., Iqbal, R., & Patel, P.D. (2013). Maternal separation alters serotonergic and HPA axis gene expression independent of separation duration in mice. Brain Research, 1515, 29–38. doi:10.1016/j.brainres.2013.03.032
  • Pariante, C.M., & Miller, A.H. (2001). Glucocorticoid receptors in major depression: Relevance to pathophysiology and treatment. Biological Psychiatry, 49, 391–404. doi:10.1016/S0006-3223(00)01088-X
  • Paxinos, G., & Watson, C. (2007). The Rat Brain in Stereotaxic Coordinates (6th ed). San Diego: Elsevier Academic Pess.
  • Pineyro, G., Deveault, L., de Montigny, C., & Blier, P. (1995). Effect of prolonged administration of tianeptine on 5-HT neurotransmission: An electrophysiological study in the rat hippocampus and dorsal raphe. Naunyn-Schmiedeberg's Archives of Pharmacology, 351, 119–125. doi:10.1007/BF00169325
  • Pollano, A., Zalosnik, M.I., Durando, P.E., & Suarez, M.M. (2016). Differential effects of tianeptine on the dorsal hippocampal volume of rats submitted to maternal separation followed by chronic unpredictable stress in adulthood. Stress, 19, 599–608. doi:10.1080/10253890.2016.1224842
  • Raftogianni, A., Diamantopoulou, A., Alikaridis, F., Stamatakis, A., & Stylianopoulou, F. (2012). Effects of interaction of an early experience of reward through maternal contact or its denial with social stress during adolescence on the serotonergic system and the stress responsiveness of adult female rats. Neuroscience, 209, 84–96. doi:10.1016/j.neuroscience.2012.01.032
  • Roy, A., & Campbell, M.K. (2013). A unifying framework for depression: Bridging the major biological and psychosocial theories through stress. Clinical & Investigative Medicine, 36, E170–E190.
  • Santarelli, S., Zimmermann, C., Kalideris, G., Lesuis, S.L., Arloth, J., Uribe, A., … Schmidt, M.V. (2017). An adverse early life environment can enhance stress resilience in adulthood. Psychoneuroendocrinology, 78, 213–221. doi:10.1016/j.psyneuen.2017.01.021
  • Schmidt, M.V. (2011). Animal models for depression and the mismatch hypothesis of disease. Psychoneuroendocrinology, 36, 330–338. doi:10.1016/j.psyneuen.2010.07.001
  • Staub, D.R., Spiga, F., & Lowry, C.A. (2005). Urocortin 2 increases c-Fos expression in topographically organized subpopulations of serotonergic neurons in the rat dorsal raphe nucleus. Brain Research, 1044, 176–189. doi:10.1016/j.brainres.2005.02.080
  • Suarez, M., Paglini, P., Fernandez, R., Enders, J., Maglianesi, M., Perassi, N., & Palma, J. (1999). Influence of anterodorsal thalamic nuclei on the hypophyseal-adrenal axis and cardiac beta receptors in rats submitted to variable chronic stress. Acta Physiologica, Pharmacologica Et Therapeutica Latinoamericana: Organo De La Asociacion Latinoamericana De Ciencias Fisiologicas y [De] La Asociacion Latinoamericana De Farmacologia, 49, 71–78.
  • Tanahashi, S., Yamamura, S., Nakagawa, M., Motomura, E., & Okada, M. (2012). Effect of lamotrigine and carbamazepine on corticotropin-releasing factor-associated serotonergic transmission in rat dorsal raphe nucleus. Psychopharmacology (Berl), 220, 599–610. doi:10.1007/s00213-011-2506-y
  • Trujillo, V., Durando, P.E., & Suarez, M.M. (2016). Maternal separation in early life modifies anxious behavior and Fos and glucocorticoid receptor expression in limbic neurons after chronic stress in rats: Effects of tianeptine. Stress, 19, 91–103. doi:10.3109/10253890.2015.1105958
  • Trujillo, V., Masseroni, M.L., Levin, G., & Suárez, M.M. (2009). Tianeptine influence on plasmatic catecholamine levels and anxiety index in rats under variable chronic stress after early maternal separation. The International Journal of Neuroscience, 119, 1210–1227. doi:10.1080/00207450802324713
  • Van den Hove, D.L., Leibold, N.K., Strackx, E., Martinez-Claros, M., Lesch, K.P., Steinbusch, H.W., … Prickaerts, J. (2014). Prenatal stress and subsequent exposure to chronic mild stress in rats; interdependent effects on emotional behavior and the serotonergic system. European Neuropsychopharmacology, 24, 595–607. doi:10.1016/j.euroneuro.2013.09.006
  • Vetulani, J. (2013). Early maternal separation: a rodent model of depression and a prevailing human condition. Pharmacological Reports, 65, 1451–1461. doi:10.1016/S1734-1140(13)71505-6
  • Vicentic, A., Francis, D., Moffett, M., Lakatos, A., Rogge, G., Hubert, G.W., … Kuhar, M.J. (2006). Maternal separation alters serotonergic transporter densities and serotonergic 1A receptors in rat brain. Neuroscience, 140, 355–365. doi:10.1016/j.neuroscience.2006.02.008
  • Waselus, M., Nazzaro, C., Valentino, R.J., & Van Bockstaele, E.J. (2009). Stress-induced redistribution of corticotropin-releasing factor receptor subtypes in the dorsal raphe nucleus. Biological Psychiatry, 66, 76–83. doi:10.1016/j.biopsych.2009.02.014
  • Waselus, M., Valentino, R.J., & Van Bockstaele, E.J. (2011). Collateralized dorsal raphe nucleus projections: A mechanism for the integration of diverse functions during stress. Journal of Chemical Neuroanatomy, 41, 266–280. doi:10.1016/j.jchemneu.2011.05.011
  • Willner, P. (2005). Chronic mild stress (CMS) revisited: Consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology, 52, 90–110. doi:10.1159/000087097
  • Willner, P., Scheel-Kruger, J., & Belzung, C. (2013). The neurobiology of depression and antidepressant action. Neuroscience and Biobehavioral Reviews, 37, 2331–2371. doi:10.1016/j.neubiorev.2012.12.007
  • Wong, M.L., Kling, M.A., Munson, P.J., Listwak, S., Licinio, J., Prolo, P., … Gold, P.W. (2000). Pronounced and sustained central hypernoradrenergic function in major depression with melancholic features: Relation to hypercortisolism and corticotropin-releasing hormone. Proceedings of the National Academy of Sciences of the United States of America, 97, 325–330. doi:10.3389/fnbeh.2015.00094
  • Xue, X., Shao, S., Wang, W., & Shao, F. (2013). Maternal separation induces alterations in reversal learning and brain-derived neurotrophic factor expression in adult rats. Neuropsychobiology, 68, 243–249. doi:10.1016/j.brainresbull.2013.03.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.