Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 23, 2020 - Issue 4
1,657
Views
14
CrossRef citations to date
0
Altmetric
Original Research Reports

Chronic unpredictable restraint stress increases hippocampal pro-inflammatory cytokines and decreases motivated behavior in rats

, ORCID Icon, , &
Pages 427-436 | Received 13 Aug 2019, Accepted 02 Jan 2020, Published online: 14 Jan 2020

References

  • Bambico, F.R., Bregman, T., Diwan, M., Li, J., Darvish-Ghane, S., Li, Z., … Hamani, C. (2015). Neuroplasticity-dependent and -independent mechanisms of chronic deep brain stimulation in stressed rats. Translational Psychiatry, 5, e674–e674. doi:10.1038/tp.2015.166
  • Bambico, F.R., Comai, S., Diwan, M., Hasan, S.M.N., Conway, J.D., Darvish-Ghane, S., … Nobrega, J.N. (2018). High frequency stimulation of the anterior vermis modulates behavioural response to chronic stress: Involvement of the prefrontal cortex and dorsal raphe? Neurobiology of Disease, 116, 166–178. doi:10.1016/j.nbd.2018.03.011
  • Banks, W.A. (2005). Blood-brain barrier transport of cytokines: A mechanism for neuropathology. Current Pharmaceutical Design, 11, 973–984. doi:10.2174/1381612053381684
  • Barsy, B., Leveleki, C., Zelena, D., & Haller, J. (2010). The context specificity of anxiety responses induced by chronic psychosocial stress in rats: A shift from anxiety to social phobia? Stress, 13, 230–237. doi:10.3109/10253890903296389
  • Bisht, K., Sharma, K., & Tremblay, M. (2018). Chronic stress as a risk factor for Alzheimer’s disease: Roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiology of Stress, 9, 9–21. doi:10.1016/j.ynstr.2018.05.003
  • Bloss, E.B., Janssen, W.G., McEwen, B.S., & Morrison, J.H. (2010). Interactive effects of stress and aging on structural plasticity in the prefrontal cortex. Journal of Neuroscience, 30, 6726–6731. doi:10.1523/JNEUROSCI.0759-10.2010
  • Bodnoff, S.R., Suranyi-Cadotte, B., Aitken, D.H., Quirion, R., & Meaney, M.J. (1988). The effects of chronic antidepressant treatment in an animal model of anxiety. Psychopharmacology, 95, 298–302. doi:10.1007/BF00181937
  • Bogdanova, O.V., Kanekar, S., D’Anci, K.E., & Renshaw, P.F. (2013). Factors influencing behavior in the forced swim test. Physiology & Behavior, 118, 227–239. doi:10.1016/j.physbeh.2013.05.012
  • Cabbia, R., Consoli, A., & Suchecki, D. (2018). Association of 24 h maternal deprivation with a saline injection in the neonatal period alters adult stress response and brain monoamines in a sex-dependent fashion. Stress, 21, 333–346. doi:10.1080/10253890.2018.1456525
  • Calcia, M.A., Bonsall, D.R., Bloomfield, P.S., Selvaraj, S., Barichello, T., & Howes, O.D. (2016). Stress and neuroinflammation: A systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology (Berl), 233, 1637–1650. doi: 10.1007/s00213-016-4218-9
  • Calvo, N., & Volosin, M. (2001). Glucocorticoid and mineralocorticoid receptors are involved in the facilitation of anxiety-like response induced by restraint. Neuroendocrinology, 73, 261–271. doi:10.1159/000054643
  • Chiba, S., Numakawa, T., Ninomiya, M., Richards, M.C., Wakabayashi, C., & Kunugi, H. (2012). Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 39, 112–119. doi:10.1016/j.pnpbp.2012.05.018
  • Chotiwat, C., Kelso, E.W., & Harris, R.B. (2010). The effects of repeated restraint stress on energy balance and behavior of mice with selective deletion of CRF receptors. Stress, 13, 203–213. doi:10.3109/10253890903207527
  • da Silva Rocha-Lopes, J., Machado, R.B., & Suchecki, D. (2018). Chronic REM sleep restriction in juvenile male rats induces anxiety-like behavior and alters monoamine systems in the amygdala and hippocampus. Molecular Neurobiology, 55, 2884–2896. doi:10.1007/s12035-017-0541-3
  • Dahl, J., Ormstad, H., Aass, H.C., Malt, U.F., Bendz, L.T., Sandvik, L., … Andreassen, O.A. (2014). The plasma levels of various cytokines are increased during ongoing depression and are reduced to normal levels after recovery. Psychoneuroendocrinology, 45, 77–86. doi:10.1016/j.psyneuen.2014.03.019
  • de Kloet, E.R., Joëls, M., & Holsboer, F. (2005). Stress and the brain: From adaptation to disease. Nature Reviews Neuroscience, 6, 463–475. doi:10.1038/nrn1683
  • de Kloet, E.R., & Molendijk, M.L. (2016). Coping with the forced swim stressor: Towards understanding an adaptive mechanism. Neural Plasticity, 2016, 1–13. doi:10.1155/2016/6503162
  • Deak, T., Bellamy, C., D’Agostino, L.G., Rosanoff, M., McElderry, N.K., & Bordner, K.A. (2005). Behavioral responses during the forced swim test are not affected by anti-inflammatory agents or acute illness induced by lipopolysaccharide. Behavioural Brain Research, 160, 125–134. doi:10.1016/j.bbr.2004.11.024
  • Dong, X.Z., Wang, D.X., Lu, Y.P., Yuan, S., Liu, P., & Hu, Y. (2017). Antidepressant effects of Kai-Xin-San in fluoxetine-resistant depression rats. Brazilian Journal of Medical and Biological Research, 50, e6161. doi:10.1590/1414-431x20176161
  • Fernandes, J., & Gupta, G.L. (2019). N-acetylcysteine attenuates neuroinflammation associated depressive behavior induced by chronic unpredictable mild stress in rat. Behavioural Brain Research, 364, 356–365. doi:10.1016/j.bbr.2019.02.025
  • Ferraz, A.C., Delattre, A.M., Almendra, R.G., Sonagli, M., Borges, C., Araujo, P., … Lima, M.M. (2011). Chronic ω-3 fatty acids supplementation promotes beneficial effects on anxiety, cognitive and depressive-like behaviors in rats subjected to a restraint stress protocol. Behavioural Brain Research, 219, 116–122. doi:10.1016/j.bbr.2010.12.028
  • Fornaro, M., Rocchi, G., Escelsior, A., Contini, P., & Martino, M. (2013). Might different cytokine trends in depressed patients receiving duloxetine indicate differential biological backgrounds. Journal of Affective Disorders, 145, 300–307. doi:10.1016/j.jad.2012.08.007
  • Gądek-Michalska, A., Tadeusz, J., Rachwalska, P., & Bugajski, J. (2016). Psychosocial stress inhibits additional stress-induced hyperexpression of NO synthases and IL-1β in brain structures. Pharmacological Reports, 68, 1178–1196. doi:10.1016/j.pharep.2016.09.003
  • Galea, L.A., McEwen, B.S., Tanapat, P., Deak, T., Spencer, R.L., & Dhabhar, F.S. (1997). Sex differences in dendritic atrophy of CA3 pyramidal neurons in response to chronic restraint stress. Neuroscience, 81, 689–697. doi:10.1016/S0306-4522(97)00233-9
  • Girardi, C.E., Zanta, N.C., & Suchecki, D. (2014). Neonatal stress-induced affective changes in adolescent Wistar rats: Early signs of schizophrenia-like behavior. Frontiers in Behavioral Neuroscience, 8, 319. doi:10.3389/fnbeh.2014.00319
  • Gould, E., McEwen, B.S., Tanapat, P., Galea, L.A., & Fuchs, E. (1997). Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. The Journal of Neuroscience, 17, 2492–2498. doi:10.1523/JNEUROSCI.17-07-02492.1997
  • Grissom, N., & Bhatnagar, S. (2009). Habituation to repeated stress: Get used to it. Neurobiology of Learning and Memory, 92, 215–224. doi:10.1016/j.nlm.2008.07.001
  • Hamani, C., Amorim, B.O., Wheeler, A.L., Diwan, M., Driesslein, K., Covolan, L., … Nobrega, J.N. (2014). Deep brain stimulation in rats: Different targets induce similar antidepressant-like effects but influence different circuits. Neurobiology of Disease, 71, 205–214. doi:10.1016/j.nbd.2014.08.007
  • Hamani, C., Giacobbe, P., Diwan, M., Balbino, E.S., Tong, J., Bridgman, A., … Nobrega, J.N. (2012). Monoamine oxidase inhibitors potentiate the effects of deep brain stimulation. American Journal of Psychiatry, 169, 1320–1321. doi:10.1176/appi.ajp.2012.12060754
  • Hamani, C., Machado, D.C., Hipólide, D.C., Dubiela, F.P., Suchecki, D., Macedo, C.E., … Nobrega, J.N. (2012). Deep brain stimulation reverses anhedonic-like behavior in a chronic model of depression: Role of serotonin and brain derived neurotrophic factor. Biological Psychiatry, 71, 30–35. doi:10.1016/j.biopsych.2011.08.025
  • Han, A., Yeo, H., Park, M.J., Kim, S.H., Choi, H.J., Hong, C.W., & Kwon, M.S. (2015). IL-4/10 prevents stress vulnerability following imipramine discontinuation. Journal of Neuroinflammation, 12, 197. doi:10.1186/s12974-015-0416-3
  • Harris, R.B. (2015). Chronic and acute effects of stress on energy balance: Are there appropriate animal models? American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 308, R250–R265. doi:10.1152/ajpregu.00361.2014
  • Jaremka, L.M., Lindgren, M.E., & Kiecolt-Glaser, J.K. (2013). Synergistic relationships among stress, depression, and troubled relationships: Insights from psychoneuroimmunology. Depression and Anxiety, 30, 288–296. doi:10.1002/da.22078
  • Kearns, R.R., & Spencer, R.L. (2013). An unexpected increase in restraint duration alters the expression of stress response habituation. Physiology & Behavior, 122, 193–200. doi:10.1016/j.physbeh.2013.03.029
  • Koolhaas, J.M., Bartolomucci, A., Buwalda, B., de Boer, S.F., Flügge, G., Korte, S.M., … Fuchs, E. (2011). Stress revisited: A critical evaluation of the stress concept. Neuroscience & Biobehavioral Reviews, 35, 1291–1301. doi:10.1016/j.neubiorev.2011.02.003
  • Krügel, U., Fischer, J., Radicke, S., Sack, U., & Himmerich, H. (2013). Antidepressant effects of TNF-α blockade in an animal model of depression. Journal of Psychiatric Research, 47, 611–616. doi:10.1016/j.jpsychires.2013.01.007
  • Lezak, K.R., Missig, G., & Carlezon, W.A. (2017). Behavioral methods to study anxiety in rodents. Dialogues in Clinical Neuroscience, 19, 181–191.
  • Li, H., Liu, X., Poh, Y., Wu, L., Zhou, Q.G., & Cai, B.C. (2014). Rapid determination of corticosterone in mouse plasma by ultra fast liquid chromatography-tandem mass spectrometry. Biomedical Chromatography, 28, 1860–1863. doi:10.1002/bmc.3232
  • Macedo, G.C., Morita, G.M., Domingues, L.P., Favoretto, C.A., Suchecki, D., & Quadros, I.M.H. (2018). Consequences of continuous social defeat stress on anxiety- and depressive-like behaviors and ethanol reward in mice. Hormones and Behavior, 97, 154–161. doi:10.1016/j.yhbeh.2017.10.007
  • Ménard, C., Pfau, M.L., Hodes, G.E., & Russo, S.J. (2017). Immune and neuroendocrine mechanisms of stress vulnerability and resilience. Neuropsychopharmacology, 42, 62–80. doi:10.1038/npp.2016.90
  • Miragaia, A.S., de Oliveira Wertheimer, G.S., Consoli, A.C., Cabbia, R., Longo, B.M., Girardi, C.E.N., & Suchecki, D. (2018). Maternal deprivation increases anxiety- and depressive-like behaviors in an age-dependent fashion and reduces neuropeptide Y expression in the amygdala and hippocampus of male and female young adult rats. Frontiers in Behavioral Neuroscience, 12, 159.
  • Molendijk, M.L., & de Kloet, E.R. (2015). Immobility in the forced swim test is adaptive and does not reflect depression. Psychoneuroendocrinology, 62, 389–391. doi:10.1016/j.psyneuen.2015.08.028
  • Oh, H.A., Kim, D.E., Choi, H.J., Kim, N.J., & Kim, D.H. (2015). Anti-stress effects of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol in immobilized mice. Biological & Pharmaceutical Bulletin, 38, 331–335. doi:10.1248/bpb.b14-00669
  • Padovan, C.M., & Guimarães, F.S. (2000). Restraint-induced hypoactivity in an elevated plus-maze. Brazilian Journal of Medical and Biological Research, 33, 79–83. doi:10.1590/S0100-879X2000000100011
  • Pearson-Leary, J., Eacret, D., & Bhatnagar, S. (2019). Interleukin-1α in the ventral hippocampus increases stress vulnerability and inflammation-related processes. Stress, In press. doi:10.1080/10253890.2019.1673360
  • Porsolt, R.D., Bertin, A., & Jalfre, M. (1977). Behavioral despair in mice: A primary screening test for antidepressants. Archives Internationales de Pharmacodynamie et de Therapie, 229, 327–336.
  • Retana-Márquez, S., Bonilla-Jaime, H., Vázquez-Palacios, G., Domínguez-Salazar, E., Martínez-García, R., & Velázquez-Moctezuma, J. (2003). Body weight gain and diurnal differences of corticosterone changes in response to acute and chronic stress in rats. Psychoneuroendocrinology, 28, 207–227. doi:10.1016/S0306-4530(02)00017-3
  • Réus, G.Z., Fries, G.R., Stertz, L., Badawy, M., Passos, I.C., Barichello, T., … Quevedo, J. (2015). The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience, 300, 141–154. doi:10.1016/j.neuroscience.2015.05.018
  • Riaz, M.S., Bohlen, M.O., Gunter, B.W., Quentin, H., Stockmeier, C.A., & Paul, I.A. (2015). Attenuation of social interaction-associated ultrasonic vocalizations and spatial working memory performance in rats exposed to chronic unpredictable stress. Physiology & Behavior, 152, 128–134. doi:10.1016/j.physbeh.2015.09.005
  • Samtani, M.N., & Jusko, W.J. (2007). Quantification of dexamethasone and corticosterone in rat biofluids and fetal tissue using highly sensitive analytical methods: Assay validation and application to a pharmacokinetic study. Biomedical Chromatography, 21, 585–597. doi:10.1002/bmc.788
  • Sarkar, A., & Kabbaj, M. (2016). Sex differences in effects of ketamine on behavior, spine density, and synaptic proteins in socially isolated rats. Biological Psychiatry, 80, 448–456. doi:10.1016/j.biopsych.2015.12.025
  • Simon, N.M., McNamara, K., Chow, C.W., Maser, R.S., Papakostas, G.I., Pollack, M.H., … Wong, K.K. (2008). A detailed examination of cytokine abnormalities in Major Depressive Disorder. European Neuropsychopharmacology, 18, 230–233. doi:10.1016/j.euroneuro.2007.06.004
  • Slattery, D.A., & Cryan, J.F. (2012). Using the rat forced swim test to assess antidepressant-like activity in rodents. Nature Protocols, 7, 1009–1014. doi:10.1038/nprot.2012.044
  • Slattery, D.A., & Cryan, J.F. (2017). Modelling depression in animals: At the interface of reward and stress pathways. Psychopharmacology, 234, 1451–1465. doi:10.1007/s00213-017-4552-6
  • Surget, A., Tanti, A., Leonardo, E.D., Laugeray, A., Rainer, Q., Touma, C., … Belzung, C. (2011). Antidepressants recruit new neurons to improve stress response regulation. Molecular Psychiatry, 16, 1177–1188. doi:10.1038/mp.2011.48
  • Swiergiel, A.H., & Dunn, A.J. (2006). Feeding, exploratory, anxiety- and depression-related behaviors are not altered in interleukin-6-deficient male mice. Behavioural Brain Research, 171, 94–108. doi:10.1016/j.bbr.2006.03.024
  • Tamashiro, K.L., Nguyen, M.M., Ostrander, M.M., Gardner, S.R., Ma, L.Y., Woods, S.C., & Sakai, R.R. (2007). Social stress and recovery: Implications for body weight and body composition. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 293, R1864–R1874. doi:10.1152/ajpregu.00371.2007
  • Tan, S., Wang, Y., Chen, K., Long, Z., & Zou, J. (2017). Ketamine alleviates depressive-like behaviors via down-regulating inflammatory cytokines induced by chronic restraint stress in mice. Biological & Pharmaceutical Bulletin, 40, 1260–1267. doi:10.1248/bpb.b17-00131
  • Tynan, R.J., Naicker, S., Hinwood, M., Nalivaiko, E., Buller, K.M., Pow, D.V., … Walker, F.R. (2010). Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain, Behavior, and Immunity, 24, 1058–1068. doi:10.1016/j.bbi.2010.02.001
  • Vasconcelos, M., Stein, D.J., & de Almeida, R.M. (2015). Social defeat protocol and relevant biomarkers, implications for stress response physiology, drug abuse, mood disorders and individual stress vulnerability: A systematic review of the last decade. Trends in Psychiatry and Psychotherapy, 37, 51–66. doi:10.1590/2237-6089-2014-0034
  • Verma, P., Hellemans, K.G., Choi, F.Y., Yu, W., & Weinberg, J. (2010). Circadian phase and sex effects on depressive/anxiety-like behaviors and HPA axis responses to acute stress. Physiology & Behavior, 99, 276–285. doi:10.1016/j.physbeh.2009.11.002
  • Voorhees, J.L., Tarr, A.J., Wohleb, E.S., Godbout, J.P., Mo, X., Sheridan, J.F., … Marsh, C.B. (2013). Prolonged restraint stress increases IL-6, reduces IL-10, and causes persistent depressive-like behavior that is reversed by recombinant IL-10. PLoS One, 8, e58488. doi:10.1371/journal.pone.0058488
  • Wang, Y.L., Han, Q.Q., Gong, W.Q., Pan, D.H., Wang, L.Z., Hu, W., Yang, M., Li, B., Yu, J., & Liu Q. (2018). Microglial activation mediates chronic mild stress-induced depressive- and anxiety-like behavior in adult rats. Journal of Neuroinflammation, 15, 21. doi: 10.1186/s12974-018-1054-3
  • Willner, P. (1997). Validity, reliability and utility of the chronic mild stress model of depression: A 10-year review and evaluation. Psychopharmacology, 134, 319–329. doi:10.1007/s002130050456
  • Wohleb, E.S., McKim, D.B., Sheridan, J.F., & Godbout, J.P. (2014). Monocyte trafficking to the brain with stress and inflammation: A novel axis of immune-to-brain communication that influences mood and behavior. Frontiers in Neuroscience, 8, 447. doi:10.3389/fnins.2014.00447
  • Yan, H.C., Cao, X., Das, M., Zhu, X.H., & Gao, T.M. (2010). Behavioral animal models of depression. Neuroscience Bulletin, 26, 327–337. doi:10.1007/s12264-010-0323-7
  • Yin, X., Guven, N., & Dietis, N. (2016). Stress-based animal models of depression: Do we actually know what we are doing? Brain Research, 1652, 30–42. doi:10.1016/j.brainres.2016.09.027

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.