Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 24, 2021 - Issue 4
1,558
Views
7
CrossRef citations to date
0
Altmetric
Original Research Reports

Menstrual variation in the acute testosterone and cortisol response to laboratory stressors correlate with baseline testosterone fluctuations at a within- and between-person level

ORCID Icon, & ORCID Icon
Pages 458-467 | Received 06 May 2020, Accepted 02 Dec 2020, Published online: 23 Dec 2020

References

  • Acevedo-Rodriguez, A., Kauffman, A. S., Cherrington, B. D., Borges, C. S., Roepke, T. A., & Laconi, M. (2018). Emerging insights into hypothalamic-pituitary-gonadal axis regulation and interaction with stress signalling. Journal of Neuroendocrinology, 30(10), e12590. https://doi.org/10.1111/jne.12590
  • Al-Dujaili, E. A. S., & Sharp, M. A. (2012). Female salivary testosterone: measurement, challenges and applications steroids. In S. Ostojic (Ed.), From physiology to clinical medicine (pp. 129–167). InTech.
  • Andreano, J. M., Touroutoglou, A., Dickerson, B., & Barrett, L. F. (2018). Hormonal cycles, brain network connectivity, and windows of vulnerability to affective disorder. Trends in Neurosciences, 41(10), 660–676. https://doi.org/10.1016/j.tins.2018.08.007
  • Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182. https://doi.org/10.1037//0022-3514.51.6.1173
  • Bateup, H. S., Booth, A., Shirtcliff, E. A., & Granger, D. A. (2002). Testosterone, cortisol, and women’s competition. Evolution and Human Behavior, 23(3), 181–192. https://doi.org/10.1016/S1090-5138(01)00100-3
  • Bloch, M., Schmidt, P. J., Su, T. P., Tobin, M. B., & Rubinow, D. R. (1998). Pituitary-adrenal hormones and testosterone across the menstrual cycle in women with premenstrual syndrome and controls. Biological Psychiatry, 43(12), 897–903. https://doi.org/10.1016/s0006-3223(98)00403-x
  • Burger, H. G. (2002). Androgen production in women. Fertility and Sterility, 77(S4), 3–5. https://doi.org/10.1016/S0015-0282(02)02985-0
  • Casto, K. V., Edwards, D. A., Akinola, M., Davis, C., & Mehta, P. H. (2020). Testosterone reactivity to competition and competitive endurance in men and women. Hormones and Behavior, 123, 104665. https://doi.org/10.1016/j.yhbeh.2019.104665
  • Childs, E., Dlugos, A., & De Wit, H. (2010). Cardiovascular, hormonal, and emotional responses to the TSST in relation to sex and menstrual cycle phase. Psychophysiology, 47(3), 550–559. https://doi.org/10.1111/j.1469-8986.2009.00961.x
  • Chrousos, G. P., Torpy, D. J., & Gold, P. W. (1998). Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: Clinical implications. Annals of Internal Medicine, 129(3), 229–240. https://doi.org/10.7326/0003-4819-129-3-199808010-00012
  • Collins, A., Eneroth, P., & Landgren, B. M. (1985). Psychoneuroendocrine stress responses and mood as related to the menstrual cycle. Psychosomatic Medicine, 47(6), 512–527. https://doi.org/10.1097/00006842-198511000-00002
  • Cook, C. J., & Crewther, B. T. (2019). Within- and between-person variation in morning testosterone is associated with economic risk-related decisions in athletic women across the menstrual cycle. Hormones and Behavior, 112, 77–80. https://doi.org/10.1016/j.yhbeh.2019.04.007
  • Cook, C. J., Crewther, B. T., & Smith, A. (2012). Comparison of baseline free testosterone and cortisol concentrations between elite and non-elite female athletes. American Journal of Human Biology, 24(6), 856–858. https://doi.org/10.1002/ajhb.22302
  • Cook, C. J., Kilduff, L. P., & Crewther, B. T. (2018). Basal and stress-induced salivary testosterone variation across the menstrual cycle and linkage to motivation and muscle power. Scandinavian Journal of Medicine & Science in Sports, 28(4), 1345–1353. https://doi.org/10.1111/sms.13041
  • Crewther, B. T., & Cook, C. J. (2018a). A longitudinal analysis of salivary testosterone concentrations and competitiveness in elite and non-elite women athletes. Physiology & Behavior, 188, 157–161. https://doi.org/10.1016/j.physbeh.2018.02.012
  • Crewther, B. T., & Cook, C. J. (2018b). The salivary testosterone response to a chance-determined contest is associated with faze-gazing behaviours in athletic women. Hormones and Behavior, 103, 107–110. https://doi.org/10.1016/j.yhbeh.2018.06.011
  • Crewther, B. T., & Cook, C. J. (2019). The digit ratio (2D:4D) relationship with testosterone is moderated by physical training: evidence of prenatal organizational influences on activational patterns of adult testosterone in physically-active women. Early Human Development, 131, 51–55. https://doi.org/10.1016/j.earlhumdev.2019.02.008
  • Crewther, B. T., Hamilton, D., Casto, K., Kilduff, L. P., & Cook, C. J. (2015). Effects of oral contraceptive use on the salivary testosterone and cortisol responses to training sessions and competitions in elite women athletes. Physiology & Behavior, 147, 84–90. https://doi.org/10.1016/j.physbeh.2015.04.017
  • Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130(3), 355–391. https://doi.org/10.1037/0033-2909.130.3.355
  • Edinger, K. L., & Frye, C. A. (2005). Testosterone’s anti-anxiety and analgesic effects may be due in part to actions of its 5alpha-reduced metabolites in the hippocampus. Psychoneuroendocrinology, 30(5), 418–430. https://doi.org/10.1016/j.psyneuen.2004.11.001
  • Fuss, J., Claro, L., Ising, M., Biedermann, S. V., Wiedemann, K., Stalla, G. K., Briken, P., & Auer, M. K. (2019). Does sex hormone treatment reverse the sex-dependent stress regulation? A longitudinal study on hypothalamus-pituitary-adrenal (HPA) axis activity in transgender individuals. Psychoneuroendocrinology, 104, 228–237. https://doi.org/10.1016/j.psyneuen.2019.02.023
  • Gangestad, S. W., Haselton, M. G., Welling, L. L. M., Gildersleeve, K., Pillsworth, E. G., Burriss, R. P., Larson, C. M., & Puts, D. A. (2016). How valid are assessments of conception probability in ovulatory cycle research? Evaluations, recommendations, and theoretical implications. Evolution and Human Behavior, 37(2), 85–96. https://doi.org/10.1016/j.evolhumbehav.2015.09.001
  • Goldstein, J. M., Jerram, M., Abbs, B., Whitfield-Gabrieli, S., & Makris, N. (2010). Sex differences in stress response circuitry activation dependent on female hormonal cycle. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 30(2), 431–438. https://doi.org/10.1523/JNEUROSCI.3021-09.2010
  • Gordon, J. L., & Girdler, S. S. (2014). Mechanisms underlying hemodynamic and neuroendocrine stress reactivity at different phases of the menstrual cycle. Psychophysiology, 51(4), 309–318. https://doi.org/10.1111/psyp.12177
  • Hahn, A. C., Fisher, C. I., Cobey, K. D., DeBruine, L. M., & Jones, B. C. (2016). A longitudinal analysis of women’s salivary testosterone and intrasexual competitiveness. Psychoneuroendocrinology, 64, 117–122. https://doi.org/10.1016/j.psyneuen.2015.11.014
  • Hlavacova, N., Wawruch, M., Tisonova, J., & Jezova, D. (2008). Neuroendocrine activation during combined mental and physical stress in women depends on trait anxiety and the phase of the menstrual cycle. Annals of the New York Academy of Sciences, 1148, 520–525. https://doi.org/10.1196/annals.1410.030
  • Jezova, D., Balagova, L., Chmelova, M., & Hlavacova, N. (2019). Classical steroids in a new fashion: focus on testosterone and aldosterone. Current Protein & Peptide Science, 20(11), 1112–1118. https://doi.org/10.2174/1389203720666190704151254
  • Kanaley, J. A., Boileau, R. A., Bahr, J. M., Misner, J. E., & Nelson, R. A. (1992). Cortisol levels during prolonged exercise: the influence of menstrual phase and menstrual status. International Journal of Sports Medicine, 13(4), 332–336. https://doi.org/10.1055/s-2007-1021276
  • Kirschbaum, C., Kudielka, B. M., Gaab, J., Schommer, N. C., & Hellhammer, D. H. (1999). Impact of gender, menstrual cycle phase, and oral contraceptives on the activity of the hypothalamus-pituitary-adrenal axis. Psychosomatic Medicine, 61(2), 154–162. https://doi.org/10.1097/00006842-199903000-00006
  • Kirschbaum, C., Platte, P., Pirke, K.-M., & Hellhammer, D. I. R. K. (1996). Adrenocortical activation following stressful exercise: Further evidence for attenuated free cortisol responses in women using oral contraceptives. Stress Medicine, 12(3), 137–143. https://doi.org/10.1002/(SICI)1099-1700(199607)12:3<137::AID-SMI685>3.0.CO;2-C
  • Kroon, J., Pereira, A. M., & Meijer, O. C. (2020). Glucocorticoid sexual dimorphism in metabolism: Dissecting the role of sex hormones. Trends in Endocrinology and Metabolism: TEM, 31(5), 357–367. https://doi.org/10.1016/j.tem.2020.01.010
  • Kudielka, B. M., Hellhammer, D. H., & Wüst, S. (2009). Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology, 34(1), 2–18. https://doi.org/10.1016/j.psyneuen.2008.10.004
  • Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26.
  • Lane, A. R., O’Leary, C. B., & Hackney, A. C. (2015). Menstrual cycle phase effects free testosterone responses to prolonged aerobic exercise. Acta Physiologica Hungarica, 102(3), 336–341. https://doi.org/10.1556/036.102.2015.3.11
  • Maki, P. M., Mordecai, K. L., Rubin, L. H., Sundermann, E., Savarese, A., Eatough, E., & Drogos, L. (2015). Menstrual cycle effects on cortisol responsivity and emotional retrieval following a psychosocial stressor. Hormones and Behavior, 74, 201–208. https://doi.org/10.1016/j.yhbeh.2015.06.023
  • Nakamura, Y., Aizawa, K., Imai, T., Kono, I., & Mesaki, N. (2011). Hormonal responses to resistance exercise during different menstrual cycle states. Medicine and Science in Sports and Exercise, 43(6), 967–973. https://doi.org/10.1249/MSS.0b013e3182019774
  • Probst, F., Golle, J., Lory, V., & Lobmaier, J. S. (2018). Reactive aggression tracks within-participant changes in women’s salivary testosterone. Aggressive Behavior, 44(4), 362–371. https://doi.org/10.1002/ab.21757
  • Raudenbush, S. W. & Bryk, A. S. (2002). Hierarchical linear models. Sage.
  • Roca, C. A., Schmidt, P. J., Altemus, M., Deuster, P., Danaceau, M. A., Putnam, K., & Rubinow, D. R. (2003). Differential menstrual cycle regulation of hypothalamic-pituitary-adrenal axis in women with premenstrual syndrome and controls. The Journal of Clinical Endocrinology and Metabolism, 88(7), 3057–3063. https://doi.org/10.1210/jc.2002-021570
  • Rosnow, R. L., Rosenthal, R., & Rubin, D. B. (2000). Contrasts and correlations in effect-size estimation. Psychological Science, 11(6), 446–453. https://doi.org/10.1111/1467-9280.00287
  • Rubinow, D. R., Roca, C. A., Schmidt, P. J., Danaceau, M. A., Putnam, K., Cizza, G., Chrousos, G., & Nieman, L. (2005). Testosterone suppression of CRH-stimulated cortisol in men. Neuropsychopharmacology, 30(10), 1906–1912. https://doi.org/10.1038/sj.npp.1300742
  • Salonia, A., Pontillo, M., Nappi, R. E., Zanni, G., Fabbri, F., Scavini, M., Daverio, R., Gallina, A., Rigatti, P., Bosi, E., Bonini, P. A., & Montorsi, F. (2008). Menstrual cycle-related changes in circulating androgens in healthy women with self-reported normal sexual function. The Journal of Sexual Medicine, 5(4), 854–863. https://doi.org/10.1111/j.1743-6109.2008.00791.x
  • Shultz, S. J., Wideman, L., Montgomery, M. M., & Levine, B. J. (2011). Some sex hormone profiles are consistent over time in normal menstruating women: implications for sports injury epidemiology. British Journal of Sports Medicine, 45(9), 735–742. https://doi.org/10.1136/bjsm.2009.064931
  • Stanojević, A., Marković, V. M., Maćešić, S., Kolar-Anić, L., & Vukojević, V. (2018). Kinetic modelling of testosterone-related differences in the hypothalamic–pituitary–adrenal axis response to stress. Reaction Kinetics, Mechanisms and Catalysis, 123(1), 17–30. https://doi.org/10.1007/s11144-017-1315-7
  • Sung, E., Han, A., Hinrichs, T., Vorgerd, M., Manchado, C., & Platen, P. (2014). Effects of follicular versus luteal phase-based strength training in young women. SpringerPlus, 3(1), 610–618. https://doi.org/10.1186/2193-1801-3-668
  • Tersman, Z., Collins, A., & Eneroth, P. (1991). Cardiovascular responses to psychological and physiological stressors during the menstrual cycle. Psychosomatic Medicine, 53(2), 185–197. https://doi.org/10.1097/00006842-199103000-00008
  • Viau, V. (2002). Functional cross-talk between the hypothalamic-pituitary-gonadal and -adrenal axes. Journal of Neuroendocrinology, 14(6), 506–513. https://doi.org/10.1046/j.1365-2826.2002.00798.x
  • Wingfield, J. C., & Sapolsky, R. M. (2003). Reproduction and resistance to stress: When and how. Journal of Neuroendocrinology, 15(8), 711–724. https://doi.org/10.1046/j.1365-2826.2003.01033.x
  • Zavala, E., Voliotis, M., & Zerenner, T. (2020). Dynamic hormone control of stress and fertility. Frontiers in Physiology, 11, 598845. https://doi.org/10.3389/fphys.2020.598845

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.