Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 24, 2021 - Issue 5
833
Views
2
CrossRef citations to date
0
Altmetric
Original Research Reports

Behavioral effects of chronic stress in Carioca high- and low-conditioned freezing rats

, , , , &
Pages 602-611 | Received 07 Apr 2021, Accepted 20 May 2021, Published online: 07 Jun 2021

References

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). American Psychiatric Publishing. https://doi.org/10.1176/appi.books.9780890425596
  • American Psychological Association. (2016). Stress in America: The impact of discrimination (Stress in AmericaTM Survey, Issue. https://www.apa.org/news/press/releases/stress/2015/impact-of-discrimination.pdf
  • American Psychological Association. (2017). Stress in America: The State of Our Nation (Stress in AmericaTM Survey Issue. https://www.apa.org/news/press/releases/stress/2017/state-nation.pdf
  • Anderson, D. J., & Adolphs, R. (2014). A framework for studying emotions across species. Cell, 157(1), 187–200. https://doi.org/10.1016/j.cell.2014.03.003
  • Antoniuk, S., Bijata, M., Ponimaskin, E., & Wlodarczyk, J. (2019). Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability. Neuroscience and Biobehavioral Reviews, 99, 101–116. https://doi.org/10.1016/j.neubiorev.2018.12.002
  • Anyan, J., & Amir, S. (2018). Too depressed to swim or too afraid to stop? A reinterpretation of the forced swim test as a measure of anxiety-like behavior. Neuropsychopharmacology, 43(5), 931–933. https://doi.org/10.1038/npp.2017.260
  • Arai, I., Tsuyuki, Y., Shiomoto, H., Satoh, M., & Otomo, S. (2000). Decreased body temperature dependent appearance of behavioral despair in the forced swimming test in mice. Pharmacological Research, 42(2), 171–176. https://doi.org/10.1006/phrs.2000.0672
  • Aricioğlu, F., Yalcinkaya, C., Ozkartal, C. S., Tuzun, E., Sirvanci, S., Kucukali, C. I., & Utkan, T. (2020). NLRP1-mediated antidepressant effect of ketamine in chronic unpredictable mild stress model in rats. Psychiatry Investigation, 17(4), 283–291. https://doi.org/10.30773/pi.2019.0189
  • Aschbacher, K., O’Donovan, A., Wolkowitz, O. M., Dhabhar, F. S., Su, Y., & Epel, E. (2013). Good stress, bad stress and oxidative stress: Insights from anticipatory cortisol reactivity. Psychoneuroendocrinology, 38(9), 1698–1708. https://doi.org/10.1016/j.psyneuen.2013.02.004
  • Bannerman, D. M., Sprengel, R., Sanderson, D. J., McHugh, S. B., Rawlins, J. N., Monyer, H., & Seeburg, P. H. (2014). Hippocampal synaptic plasticity, spatial memory and anxiety. Nature Reviews. Neuroscience, 15(3), 181–192. https://doi.org/10.1038/nrn3677
  • Barko, K., Paden, W., Cahill, K. M., Seney, M. L., & Logan, R. W. (2019). Sex-specific effects of stress on mood-related gene expression. Molecular Neuropsychiatry, 5(3), 162–175. https://doi.org/10.1159/000499105
  • Barrett, L. F. (2017). The theory of constructed emotion: An active inference account of interoception and categorization. Social Cognitive and Affective Neuroscience, 12(11), 1833–1833. https://doi.org/10.1093/scan/nsx060
  • Baum, A., & Posluszny, D. M. (1999). Health psychology: Mapping biobehavioral contributions to health and illness. Annual Review of Psychology, 50, 137–163. https://doi.org/10.1146/annurev.psych.50.1.137
  • Benatti, C., Radighieri, G., Alboni, S., Blom, J. M. C., Brunello, N., & Tascedda, F. (2019). Modulation of neuroplasticity-related targets following stress-induced acute escape deficit. Behavioural Brain Research, 364, 140–148. https://doi.org/10.1016/j.bbr.2019.02.023
  • Berg, B. A., Schoenbaum, G., & McDannald, M. A. (2014). The dorsal raphe nucleus is integral to negative prediction errors in Pavlovian fear. The European Journal of Neuroscience, 40(7), 3096–3101. https://doi.org/10.1111/ejn.12676
  • Bogdanova, O. V., Kanekar, S., D’Anci, K. E., & Renshaw, P. F. (2013). Factors influencing behavior in the forced swim test. Physiology & Behavior, 118, 227–239. https://doi.org/10.1016/j.physbeh.2013.05.012
  • Bourke, C. H., & Neigh, G. N. (2011). Behavioral effects of chronic adolescent stress are sustained and sexually dimorphic. Hormones and Behavior, 60(1), 112–120. https://doi.org/10.1016/j.yhbeh.2011.03.011
  • Brougham, R. R., Zail, C. M., Mendoza, C. M., & Miller, J. R. (2009). Stress, sex differences, and coping strategies among college students. Current Psychology, 28(2), 85–97. https://doi.org/10.1007/s12144-009-9047-0
  • Bulos, E. M., Pobbe, R. L., & Zangrossi, H. Jr.(2015). Behavioral consequences of predator stress in the rat elevated T-maze. Physiology & Behavior, 146, 28–35. https://doi.org/10.1016/j.physbeh.2015.04.019
  • Cannon, W. B. (1929). Organization for physiological homeostasis. Physiological Reviews, 9(3), 399–431. https://doi.org/10.1152/physrev.1929.9.3.399
  • Cavaliere, D. R., Maisonnette, S., Krahe, T. E., Landeira-Fernandez, J., & Cruz, A. P. M. (2020). High- and low-conditioned behavioral effects of midazolam in carioca high- and low-conditioned freezing rats in an ethologically based test. Neuroscience Letters, 715, 134632. https://doi.org/10.1016/j.neulet.2019.134632
  • Cohen, S., Gianaros, P. J., & Manuck, S. B. (2016). A stage model of stress and disease. Perspect Psychological Science, 11(4), 456–463. https://doi.org/10.1177/1745691616646305
  • Colom-Lapetina, J., Begley, S. L., Johnson, M. E., Bean, K. J., Kuwamoto, W. N., & Shansky, R. M. (2017). Strain-dependent sex differences in a long-term forced swim paradigm. Behavioral Neuroscience, 131(5), 428–436. https://doi.org/10.1037/bne0000215
  • Commons, K. G., Cholanians, A. B., Babb, J. A., & Ehlinger, D. G. (2017). The rodent forced swim test measures stress-coping strategy, not depression-like behavior. ACS Chemical Neuroscience, 8(5), 955–960. https://doi.org/10.1021/acschemneuro.7b00042
  • Craske, M. G., Stein, M. B., Eley, T. C., Milad, M. R., Holmes, A., Rapee, R. M., & Wittchen, H. U. (2017). Anxiety disorders. Nature Reviews. Disease Primers, 3, 17024. https://doi.org/10.1038/nrdp.2017.24
  • Di Giovanni, G., & De Deurwaerdere, P. (2020). Serotonin research: Crossing scales and boundaries. Neuropharmacology, 181, 108340. https://doi.org/10.1016/j.neuropharm.2020.108340
  • Dragoş, D., & Tănăsescu, M. D. (2010). The effect of stress on the defense systems. Journal of Medicine and Life, 3(1), 10–18.
  • Du, X., Yin, M., Yuan, L., Zhang, G., Fan, Y., Li, Z., Yuan, N., Lv, X., Zhao, X., Zou, S., Deng, W., Kosten, T. R., & Zhang, X. Y. (2020). Reduction of depression-like behavior in rat model induced by ShRNA targeting norepinephrine transporter in locus coeruleus. Translational Psychiatry, 10(1), 130. https://doi.org/10.1038/s41398-020-0808-8
  • Enginar, N., Yamantürk-Çelik, P., Nurten, A., & Güney, D. B. (2016). Learning and memory in the forced swimming test: Effects of antidepressants having varying degrees of anticholinergic activity. Naunyn-Schmiedeberg’s Archives of Pharmacology, 389(7), 739–745. https://doi.org/10.1007/s00210-016-1236-4
  • Fanselow, M. S. (1980). Conditioned and unconditional components of post-shock freezing in rats. Pavlovian Journal of Biological Science, 15(4), 177–82. https://doi.org/10.1007/BF03001163
  • Fanselow, M. S. (2018). The role of learning in threat imminence and defensive behaviors. Current Opinion in Behavioral Sciences, 24, 44–49. https://doi.org/10.1016/j.cobeha.2018.03.003
  • Fanselow, M. S., & Lester, L. S. (1988). A functional behavioristic approach to aversively motivated behavior: Predatory imminence as a determinant of the topography of defensive behavior. In Evolution and learning (pp. 185–212). Lawrence Erlbaum Associates, Inc.
  • Fanselow, M. S., & Wassum, K. M. (2015). The origins and organization of vertebrate pavlovian conditioning. Cold Spring Harbor Perspectives in Biology, 8(1), a021717. https://doi.org/10.1101/cshperspect.a021717
  • Faraji, J., Singh, S., Soltanpour, N., Sutherland, R. J., & Metz, G. A. S. (2020). Environmental determinants of behavioural responses to short-term stress in rats: Evidence for inhibitory effect of ambient landmarks. Behavioural Brain Research, 379, 112332. https://doi.org/10.1016/j.bbr.2019.112332
  • Fee, C., Prevot, T., Misquitta, K., Banasr, M., & Sibille, E. (2020). Chronic stress-induced behaviors correlate with exacerbated acute stress-induced cingulate cortex and ventral hippocampus activation. Neuroscience, 440, 113–129. https://doi.org/10.1016/j.neuroscience.2020.05.034
  • Folkman, S. (2013). Stress: Appraisal and Coping. In M. D. Gellman, J. R. Turner (Eds.), Encyclopedia of Behavioral Medicine. New York, NY: Springer. https://doi.org/10.1007/978-1-4419-1005-9_215.
  • Folkman, S., & Lazarus, R. S. (1980). An analysis of coping in a middle-aged community sample. Journal of Health and Social Behavior, 21(3), 219–239. https://doi.org/10.2307/2136617
  • Franceschelli, A., Herchick, S., Thelen, C., Papadopoulou-Daifoti, Z., & Pitychoutis, P. M. (2014). Sex differences in the chronic mild stress model of depression. Behavioural Pharmacology, 25(5–6), 372–383. https://doi.org/10.1097/FBP.0000000000000062
  • Fucich, E. A., & Morilak, D. A. (2018). Shock-probe defensive burying test to measure active versus passive coping style in response to an aversive stimulus in rats. Bio Protoc, 8(17), 2998. https://doi.org/10.21769/BioProtoc.2998
  • Ghanem, I., Castelo, B., Jimenez-Fonseca, P., Carmona-Bayonas, A., Higuera, O., Beato, C., García, T., Hernández, R., & Calderon, C. (2020). Coping strategies and depressive symptoms in cancer patients. Clinical and Translational Oncology, 22(3), 330–336. https://doi.org/10.1007/s12094-019-02123-w
  • Gobira, P. H., Aguiar, D. C., & Moreira, F. A. (2013). Effects of compounds that interfere with the endocannabinoid system on behaviors predictive of anxiolytic and panicolytic activities in the elevated T-maze. Pharmacology, Biochemistry, and Behavior, 110, 33–39. https://doi.org/10.1016/j.pbb.2013.05.013
  • Gold, P. W., Goodwin, F. K., & Chrousos, G. P. (1988). Clinical and biochemical manifestations of depression. Relation to the neurobiology of stress. The New England Journal of Medicine, 319(7), 413–420. https://doi.org/10.1056/NEJM198808183190706
  • Gomes, V. d C., & Landeira-Fernandez, J. (2008). Amygdaloid lesions produced similar contextual fear conditioning disruption in the Carioca high- and low-conditioned freezing rats. Brain Research, 1233, 137–145. https://doi.org/10.1016/j.brainres.2008.07.044
  • Gomes V. D. C., Silva, C. E. B., & Landeira-Fernandez, J. (2011). The carioca high and low conditioned freezing lines: A new animal model of generalized anxiety disorder. In V. Kalinin (Ed.), Anxiety Disorders. IntechOpen.
  • Grafe, L. A., Mara, L., Branch, A., Dobkin, J., Luz, S., Vigderman, A., Shingala, A., Kubin, L., Ross, R., & Bhatnagar, S. (2020). Passive coping strategies during repeated social defeat are associated with long-lasting changes in sleep in rats. Frontiers in Systems Neuroscience, 14, 6. https://doi.org/10.3389/fnsys.2020.00006
  • Gruene, T. M., Flick, K., Stefano, A., Shea, S. D., & Shansky, R. M. (2015). Sexually divergent expression of active and passive conditioned fear responses in rats. eLife, 4, e11352. https://doi.org/10.7554/eLife.11352
  • Guo, L., Chen, Y. X., Hu, Y. T., Wu, X. Y., He, Y., Wu, J. L., Huang, M. L., Mason, M., & Bao, A. M. (2018). Sex hormones affect acute and chronic stress responses in sexually dimorphic patterns: Consequences for depression models. Psychoneuroendocrinology, 95, 34–42. https://doi.org/10.1016/j.psyneuen.2018.05.016
  • Haidkind, R., Eller, M., Harro, M., Kask, A., Rinken, A., Oreland, L., & Harro, J. (2003). Effects of partial locus coeruleus denervation and chronic mild stress on behaviour and monoamine neurochemistry in the rat. European Neuropsychopharmacology, 13(1), 19–28. https://doi.org/10.1016/S0924-977X(02)00076-7
  • Harris, R. B. (2015). Chronic and acute effects of stress on energy balance: Are there appropriate animal models? American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 308(4), R250–R265. https://doi.org/10.1152/ajpregu.00361.2014
  • Harro, J., Tonissaar, M., Eller, M., Kask, A., & Oreland, L. (2001). Chronic variable stress and partial 5-HT denervation by parachloroamphetamine treatment in the rat: Effects on behavior and monoamine neurochemistry. Brain Research, 899(1–2), 227–239. https://doi.org/10.1016/S0006-8993(01)02256-9
  • Health and Safety Executive. (2020). Work-related stress, anxiety or depression statistics in Great Britain. https://www.hse.gov.uk/statistics/causdis/stress.pdf
  • Herbert, C., Meixner, F., Wiebking, C., & Gilg, V. (2020). Regular physical activity, short-term exercise, mental health, and well-being among university students: The results of an online and a laboratory study. Frontiers in Psychology., 11, 509. https://doi.org/10.3389/fpsyg.2020.00509
  • Herman, J. P., McKlveen, J. M., Ghosal, S., Kopp, B., Wulsin, A., Makinson, R., Scheimann, J., & Myers, B. (2016). Regulation of the hypothalamic-pituitary-adrenocortical stress response. Comprehensive Physiology, 6(2), 603–621. https://doi.org/10.1002/cphy.c150015
  • Hijzen, T. H., Van Der Gugten, J., & Bouter, L. (1984). Active and passive coping under different degrees of stress; Effects on urinary and plasma catecholamines and ECG T-wave. Biological Psychology, 18(1), 23–32. https://doi.org/10.1016/0301-0511(84)90023. 1 https://doi.org/10.1016/0301-0511(84)90023-1
  • Hu, J., Feng, B., Zhu, Y., Wang, W., Xie, J., & Zheng, X. (2017). Gender differences in PTSD: Susceptibility and resilience. In A. Alvinius (Ed.), Gender differences in different contexts. IntechOpen.
  • Isosaka, T., Matsuo, T., Yamaguchi, T., Funabiki, K., Nakanishi, S., Kobayakawa, R., & Kobayakawa, K. (2015). Htr2a-expressing cells in the central amygdala control the hierarchy between innate and learned fear. Cell, 163(5), 1153–1164. https://doi.org/10.1016/j.cell.2015.10.047
  • Jefferys, D., & Funder, J. (1994). The effect of water temperature on immobility in the forced swimming test in rats. European Journal of Pharmacology, 253(1–2), 91–94. https://doi.org/10.1016/0014-2999(94)90761-7
  • Kim, M.-S., & Duda, J. L. (2003). The coping process: Cognitive appraisals of stress. The Sport Psychologist, 17(4), 406–425. https://doi.org/10.1123/tsp.17.4.406
  • Koolhaas, J. M., Korte, S. M., De Boer, S. F., Van Der Vegt, B. J., Van Reenen, C. G., Hopster, H., De Jong, I. C., Ruis, M. A., & Blokhuis, H. J. (1999). Coping styles in animals: Current status in behavior and stress-physiology. Neuroscience and Biobehavioral Reviews, 23(7), 925–935. https://doi.org/10.1016/S0149-7634(99)00026-3
  • Kudryashov, N. V., Kalinina, T. S., Shimshirt, A. A., Volkova, A. V., Narkevich, V. B., Naplekova, P. L., Kasabov, K. A., Kudrin, V. S., Voronina, T. A., & Fisenko, V. P. (2020). The behavioral and neurochemical aspects of the interaction between antidepressants and unpredictable chronic mild stress. Acta Naturae, 12(1), 63–72. https://doi.org/10.32607/actanaturae.10942
  • Lages, Y. V. M., Rossi, A. D., Krahe, T. E., & Landeira-Fernandez, J. (2021). Effect of chronic unpredictable mild stress on the expression profile of serotonin receptors in rats and mice: A meta-analysis. Neuroscience and Biobehavioral Reviews, 124, 78–88. https://doi.org/10.1016/j.neubiorev.2021.01.020
  • Landgraf, R., & Wigger, A. (2002). High vs low anxiety-related behavior rats: An animal model of extremes in trait anxiety. Behavior Genetics, 32(5), 301–314. https://doi.org/10.1023/a:1020258104318
  • Leon, L. A., Brandao, M. L., Cardenas, F. P., Parra, D., Krahe, T. E., Cruz, A. P. M., & Landeira-Fernandez, J. (2020). Distinct patterns of brain Fos expression in Carioca High- and Low-conditioned Freezing Rats. PLoS One, 15(7), e0236039. https://doi.org/10.1371/journal.pone.0236039
  • Leon, L. A., Castro-Gomes, V., Zarate-Guerrero, S., Corredor, K., Mello Cruz, A. P., Brandao, M. L., Cardenas, F. P., & Landeira-Fernandez, J. (2017). Behavioral effects of systemic, infralimbic and prelimbic injections of a serotonin 5-HT2A antagonist in Carioca High- and Low-Conditioned Freezing rats. Frontiers in Behavioral Neuroscience, 11, 117. https://doi.org/10.3389/fnbeh.2017.00117
  • Liebsch, G., Montkowski, A., Holsboer, F., & Landgraf, R. (1998). Behavioural profiles of two Wistar rat lines selectively bred for high or low anxiety-related behaviour. Behavioural Brain Research, 94(2), 301–310. https://doi.org/10.1016/S0166-4328(97)00198-8
  • Liu, W. Z., Zhang, W. H., Zheng, Z. H., Zou, J. X., Liu, X. X., Huang, S. H., You, W. J., He, Y., Zhang, J. Y., Wang, X. D., & Pan, B. X. (2020). Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nature Communications, 11(1), 2221. https://doi.org/10.1038/s41467-020-15920-7
  • Macedo-Souza, C., Maisonnette, S. S., Filgueiras, C. C., Landeira-Fernandez, J., & Krahe, T. E. (2019). Cued fear conditioning in carioca high- and low-conditioned freezing rats. Frontiers in Behavioral Neuroscience, 13, 285. https://doi.org/10.3389/fnbeh.2019.00285
  • Mah, L., Szabuniewicz, C., & Fiocco, A. J. (2016). Can anxiety damage the brain? Current Opinion in Psychiatry, 29(1), 56–63. https://doi.org/10.1097/YCO.0000000000000223
  • Maier, S. F., Grahn, R. E., Kalman, B. A., Sutton, L. C., Wiertelak, E. P., & Watkins, L. R. (1993). The role of the amygdala and dorsal raphe nucleus in mediating the behavioral consequences of inescapable shock. Behavioral Neuroscience, 107(2), 377–388. https://doi.org/10.1037//0735-7044.107.2.377
  • Maren, S. (2003). The amygdala, synaptic plasticity, and fear memory. Annals of the New York Academy of Sciences, 985, 106–113. https://doi.org/10.1111/j.1749-6632.2003.tb07075.x
  • Mason, J. W. (1975). A historical view of the stress field. Journal of Human Stress, 1(1), 6–12 contd. https://doi.org/10.1080/0097840X.1975.9940399
  • McEwen, B. S., & Stellar, E. (1993). Stress and the individual. Mechanisms leading to disease. Archives of Internal Medicine, 153(18), 2093–2101. https://doi.org/10.1001/archinte.1993.00410180039004
  • Mcfetridge, J. A., & Yarandi, H. (1997). Cardiovascular function during cognitive stress in men before and after coronary artery bypass grafts. Journal of Nursing Research. 46(4), 188–194. https://doi.org/10.1097/00006199-199707000-00002
  • McLean, C. P., Asnaani, A., Litz, B. T., & Hofmann, S. G. (2011). Gender differences in anxiety disorders: Prevalence, course of illness, comorbidity and burden of illness. Journal of Psychiatric Research, 45(8), 1027–1035. https://doi.org/10.1016/j.jpsychires.2011.03.006
  • Mental Health Foundation. (2016). Fundamental facts about mental health 2016. https://www.mentalhealth.org.uk/sites/default/files/fundamental-facts-about-mental-health-2016.pdf
  • Mezadri, T. J., Batista, G. M., Portes, A. C., Marino-Neto, J., & Lino-de-Oliveira, C. (2011). Repeated rat-forced swim test: Reducing the number of animals to evaluate gradual effects of antidepressants. Journal of Neuroscience Methods, 195(2), 200–205. https://doi.org/10.1016/j.jneumeth.2010.12.015
  • Motta, S. C., Carobrez, A. P., & Canteras, N. S. (2017). The periaqueductal gray and primal emotional processing critical to influence complex defensive responses, fear learning and reward seeking. Neuroscience and Biobehavioral Reviews, 76(Pt A), 39–47. https://doi.org/10.1016/j.neubiorev.2016.10.012
  • Naughton, M., Dinan, T. G., & Scott, L. V. (2014). Corticotropin-releasing hormone and the hypothalamic-pituitary-adrenal axis in psychiatric disease. Handbook of Clinical Neurology, 124, 69–91. https://doi.org/10.1016/b978-0-444-59602-4.00005-8
  • Nielsen, M. B., & Knardahl, S. (2014). Coping strategies: A prospective study of patterns, stability, and relationships with psychological distress. Scandinavian Journal of Psychology, 55(2), 142–150. https://doi.org/10.1111/sjop.12103
  • Olff, M. (2017). Sex and gender differences in post-traumatic stress disorder: An update. European Journal of Psychotraumatology, 8(sup4), 1351204. https://doi.org/10.1080/20008198.2017.1351204
  • Øverli, Ø., Sørensen, C., Pulman, K. G., Pottinger, T. G., Korzan, W., Summers, C. H., & Nilsson, G. E. (2007). Evolutionary background for stress-coping styles: Relationships between physiological, behavioral, and cognitive traits in non-mammalian vertebrates. Neuroscience and Biobehavioral Reviews, 31(3), 396–412. https://doi.org/10.1016/j.neubiorev.2006.10.006
  • Perez-Tejada, J., Garmendia, L., Labaka, A., Vegas, O., Gómez-Lazaro, E., & Arregi, A. (2019). Active and passive coping strategies: Comparing psychological distress, cortisol, and proinflammatory cytokine levels in breast cancer survivors. Clinical Journal of Oncology Nursing, 23(6), 583–590. https://doi.org/10.1188/19.cjon.583-590
  • Perusini, J. N., & Fanselow, M. S. (2015). Neurobehavioral perspectives on the distinction between fear and anxiety. Learning & Memory, 22(9), 417–425. https://doi.org/10.1101/lm.039180.115
  • Porsolt, R. D., Anton, G., Blavet, N., & Jalfre, M. (1978). Behavioural despair in rats: A new model sensitive to antidepressant treatments. European Journal of Pharmacology, 47(4), 379–391. https://doi.org/10.1016/0014-2999(78)90118-8
  • Porsolt, R. D., Le Pichon, M., & Jalfre, M. (1977). Depression: A new animal model sensitive to antidepressant treatments. Nature, 266(5604), 730–732. https://doi.org/10.1038/266730a0
  • Price, J. L., & Drevets, W. C. (2012). Neural circuits underlying the pathophysiology of mood disorders. Trends in Cognitive Sciences, 16(1), 61–71. https://doi.org/10.1016/j.tics.2011.12.011
  • Roelofs, K. (2017). Freeze for action: Neurobiological mechanisms in animal and human freezing. Philosophical Transactions of the Royal Society B, 372, 206. https://doi.org/10.1098/rstb.2016.0206
  • Rohleder, N. (2019). Stress and inflammation – The need to address the gap in the transition between acute and chronic stress effects. Psychoneuroendocrinology, 105, 164–171. https://doi.org/10.1016/j.psyneuen.2019.02.021
  • Santagostino, G., Amoretti, G., Frattini, P., Zerbi, F., Cucchi, M., Preda, S., & Corona, G. (1996). Catecholaminergic, neuroendocrine and anxiety responses to acute psychological stress in healthy subjects: Influence of alprazolam administration. Neuropsychobiology, 34(1), 36–43. https://doi.org/10.1159/000119289
  • Santos, V. A., Carvalho, D. D., Van Ameringen, M., Nardi, A. E., & Freire, R. C. (2019). Neuroimaging findings as predictors of treatment outcome of psychotherapy in anxiety disorders. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 91, 60–71. https://doi.org/10.1016/j.pnpbp.2018.04.001
  • Selye, H. (1976). Stress in health and disease. Butterworths.
  • Sequeira-Cordero, A., Salas-Bastos, A., Fornaguera, J., & Brenes, J. C. (2019). Behavioural characterisation of chronic unpredictable stress based on ethologically relevant paradigms in rats. Scientific Reports, 9(1), 17403. https://doi.org/10.1038/s41598-019-53624-1
  • Silva, B. A., Gross, C. T., & Graff, J. (2016). The neural circuits of innate fear: Detection, integration, action, and memorization. Learning & Memory, 23(10), 544–555. https://doi.org/10.1101/lm.042812.116
  • Stepanichev, M., Manolova, A., Peregud, D., Onufriev, M., Freiman, S., Aniol, V., Moiseeva, Y., Novikova, M., Lazareva, N., & Gulyaeva, N. (2018). Specific activity features in the forced swim test: Brain neurotrophins and development of stress-induced depressive-like behavior in rats. Neuroscience, 375, 49–61. https://doi.org/10.1016/j.neuroscience.2018.02.007
  • Strekalova, T., Couch, Y., Kholod, N., Boyks, M., Malin, D., Leprince, P., & Steinbusch, H. M. (2011). Update in the methodology of the chronic stress paradigm: Internal control matters. Behavioral and Brain Functions, 7, 9. https://doi.org/10.1186/1744-9081-7-9
  • Sun, Y., Gooch, H., & Sah, P. (2020). Fear conditioning and the basolateral amygdala. F1000Research, 9, 53. https://doi.org/10.12688/f1000research.21201.1
  • Teixeira, R. C., Zangrossi, H., & Graeff, F. G. (2000). Behavioral effects of acute and chronic imipramine in the elevated T-maze model of anxiety. Pharmacology, Biochemistry, and Behavior, 65(4), 571–576. https://doi.org/10.1016/S0091-3057(99)00261-0
  • van Oortmerssen, G. A., & Bakker, T. C. (1981). Artificial selection for short and long attack latencies in wild Mus musculus domesticus. Behavior Genetics, 11(2), 115–126. https://doi.org/10.1007/BF01065622
  • Veenema, A. H., & Neumann, I. D. (2007). Neurobiological mechanisms of aggression and stress coping: A comparative study in mouse and rat selection lines. Brain Behav Evol, 70(4), 274–285. https://doi.org/10.1159/000105491
  • Veenema, A. H., Koolhaas, J. M., & de Kloet, E. R. (2004). Basal and stress-induced differences in HPA axis, 5-HT responsiveness, and hippocampal cell proliferation in two mouse lines. Annals of the New York Academy of Sciences, 1018, 255–265. https://doi.org/10.1196/annals.1296.030
  • Viana, M. B., Tomaz, C., & Graeff, F. G. (1994). The elevated T-maze: A new animal model of anxiety and memory. Pharmacology, Biochemistry, and Behavior, 49(3), 549–554. https://doi.org/10.1016/0091-3057(94)90067-1
  • Vinader-Caerols, C., Monleón, S., Simon, V., & Parra, A. (1999). Learned immobility is also involved in the forced swimming test in mice. Psicothema, ISSN 0214-9915, 11, N(2), 239–246.
  • West, A. P. (1990). Neurobehavioral studies of forced swimming: The role of learning and memory in the forced swim test. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 14(6), 863–877. https://doi.org/10.1016/0278-5846(90)90073-P
  • Widman, A. J., Cohen, J. L., McCoy, C. R., Unroe, K. A., Glover, M. E., Khan, A. U., Bredemann, T., McMahon, L. L., & Clinton, S. M. (2019). Rats bred for high anxiety exhibit distinct fear-related coping behavior, hippocampal physiology, and synaptic plasticity-related gene expression. Hippocampus, 29(10), 939–956. https://doi.org/10.1002/hipo.23092
  • Willner, P. (2017). The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiology of Stress, 6, 78–93. https://doi.org/10.1016/j.ynstr.2016.08.002
  • Wood, S. K., & Bhatnagar, S. (2015). Resilience to the effects of social stress: Evidence from clinical and preclinical studies on the role of coping strategies. Neurobiology of Stress, 1, 164–173. https://doi.org/10.1016/j.ynstr.2014.11.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.