197
Views
4
CrossRef citations to date
0
Altmetric
Articles

Oscillatory shear stress created by fluid pulsatility versus flexed specimen configurations

, , , &
Pages 728-739 | Received 04 Feb 2012, Accepted 20 Jul 2012, Published online: 24 Aug 2012

REFERENCES

  • ArnsdorfEJ, TummalaP, JacobsCR. 2009. Non-canonical Wnt signaling and N-cadherin related b-catenin signaling play a role in mechanically induced osteogenic cell fate. PLoS ONE. 4(4):e5388.
  • ArnsdorfE, TummalaP, KwonR, JacobsC. 2009. Mechanically induced osteogenic differentiation – the role of RhoA, ROCKII and cytoskeletal dynamics. J Cell Sci. 122(Pt 4):546–553.
  • BalguidA, MolA, Van VlimmerenM, BaaijensF, BoutenC. 2009. Hypoxia induces near-native mechanical properties in engineered heart valve tissue. J Am Heart Assoc. 119(2):290–297.
  • Boronyak S, Smelko A, Sacks MS, Ramaswamy S. 2009. Design of a Flow-Stretch-Flexure Bioreactor for Physiologic Conditioning of Engineered Tissue. Biomedical Engineering Society Annual Fall Meeting. Pittsburgh, PA, October 7-10.
  • ButcherJT, MahlerGJ, HockadayLA. 2011. Aortic valve disease and treatment: the need for naturally engineered solutions. Adv Drug Deliv Rev. 63(4-5):242–268.
  • CebotariS, LichtenbergA, TudoracheI, MertschingH, LeyhR, BreymannT, KallenbachK, ManiucL, BatrinacA, RepinO, MaligaO, CiubotaruA, HaverichA. 2006. Clinical application of tissue engineered human heart valve using autologous progenitor cells. Circulation. 114(1 Suppl):132–137.
  • El-HamamsyI, ChesterAH, YacoubMH. 2010. Cellular regulation of the structure and function of aortic valves. J Adv Res. 1(1):5–12.
  • EngelmayrGC, SalesVL, MayerJE, SacksMS. 2006. Cyclic flexure and laminar flow synergistically accelerate mesenchymal stem cell-mediated engineered tissue formation: implications for engineered heart valve tissues. Biomaterials. 27(36):6083–6095.
  • EngelmayrGC, SolettiL, VigmostadSC, BudilartoSG, FederspielWJ, ChandranKB, VorpDA, SacksMS. 2008. A novel flex-stretch-flow bioreactor for the study of engineered heart valve tissue mechanobiology. Ann Biomed Eng. 36(5):1–13.
  • EvegrenP, FuchsL, RevstedtJ. 2010. Wall shear stress variations in a 90-degree bifurcation in 3D pulsating flows. Med Eng Phys. 32(2):189–202.
  • EvegrenP, RevstedtJ, FuchsL. 2011. Pulsating flow and mass transfer in an asymmetric system of bifurcations. Comput Fluids. 49(1):46–61.
  • FlanaganTC, SachwehJS, FreseJ, SchnöringH, GronlohN, KochS, TolbaRH, Schmitz-RodeT, JockenhoevelS. 2009. In vivo remodelling and structural characterisation of fibrin-based tissue-engineered heart valves in the adult sheep model. Tissue Eng. 15(10):2965–2976.
  • GandagliaA, BagnoA, NasoF, SpinaM, GerosaG. 2011. Cells, scaffolds and bioreactors for tissue-engineered heart valves: a journey from basic concepts to contemporary developmental innovations. Eur J Cardiothorac. 39(4):523–531.
  • HeX, KuDN. 1996. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng. 118(1):74–82.
  • HilfikerA, KasperC, HassR, HaverichA. 2011. Mesenchymal stem cells and progenitor cells in connective tissue engineering and regenerative medicine: is there a future for transplantation?Arch Surg. 396(4):489–497.
  • JacobsCR, YellowleyCE, DavisBR, ZhouZ, CimbalaJM, DonahueHJ. 1998. Differential effect of steady versus oscillating flow on bone cells. J Biomech. 31(11):969–976.
  • KleinstreuerC. 2006. Biofluid Dynamics: Principles and Selected Applications. CRC Press. Boca Raton, Florida. 1st Ed. p. 197–205.
  • KorakianitisT, ShiY. 2006a. A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction. Med Eng Phys. 28(7):613–628.
  • KorakianitisT, ShiY. 2006b. Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. J Biomech. 39(11):1964–1982.
  • LeeK, LeeH, KimM, KimH, JungG, HurS, TaeH. 2009. Cilostazol inhibits high glucose- and angiotensin II-induced type 1 plasminogen activator inhibitor expression in artery wall and neointimal region after vascular injury. Atherosclerosis. 207(2):391–398.
  • LiYJ, BatraNN, YouL, MeierSC, CoeIA, YellowleyCE, JacobsCR. 2004. Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation. J Orthop Res. 22(6):1283–1289.
  • LichtenbergA, BreymannT, CebotariS, HaverichA. 2006. Cell seeded tissue engineered cardiac valves based on allograft and xenograft scaffolds. Prog Pediatr Cardiol. 21(2):211–217.
  • LotzJ, MeierC, LeppertA, GalanskiM. 2002. Cardiovascular flow measurement with phase contrast MR imaging: basic facts and implementation. Radiographics. 22(3):651–671.
  • NeuenschwanderS, HoerstrupSP. 2004. Heart valve tissue engineering. Transpl Immunol. 12(3–4):359–365.
  • PerryTE, KaushalS, SutherlandFWH, GuleserianKJ, BischoffJ, SacksM, MayerJE. 2003. Bone marrow as a cell source for tissue engineering heart valves. Ann Thorac Surg. 75(3):761–767.
  • Ramaswamy S, Boronyak S, Sacks MS. 2008. Design and evaluation of a new flow-stretch-flexure bioreactor for mechanical conditioning of engineered heart valve tissues in the physiological range. The TERMIS-NA 2008 Annual Conference & Exposition. San Diego, CA. December 7–10.
  • Ramaswamy S, Boronyak S, Engelmayr GC, Schmidt DE, El-Kurdi M, Sacks MS. 2011. Flow-stretch-flexure bioreactor (US patent application #: 12/959,906) September 1st 2011; USA.
  • RamaswamyS, BoronyakS, SchmidtDE, HobsonC, HolmesA, SacksMS. 2012. A novel bioreactor for the study of physiological fluid induced stresses for heart valve tissue engineering (Unpublished work).
  • Ramaswamy S, Boronyak S, Schmidt D, Sacks MS. 2009. Design of a novel curved tube flow-stretch-flexure bioreactor for mechanistic studies in heart valve tissue engineering. Society for Biomaterials, 2009 Annual meeting and exposition. San Antonio, TX. April 22–25.
  • RamaswamyS, GottliebD, EngelmayrGC, Jr, AikawaE, SchmidtDE, Gaitan-LeonDM, SalesVL, MayerJE, Jr, SacksMS. 2010. The role of organ level conditioning on the promotion of engineered heart valve tissue development in-vitro using mesenchymal stem cells. Biomaterials. 31(6):1114–1125.
  • Ramaswamy S, Schmidt D, Boronyak S, Sacks MS. 2009. Flow patterns under combined flexural states for engineered heart valve tissue development. Biomedical Engineering Society Annual Fall Meeting, Pittsburgh, PA. October 7–10.
  • RatnerBD, HuffmanAS, SchoenFJ, LemonsJE. 2008. An introduction to materials in medicine. Elsevier Academic Press, San Diego, California. 2nd Ed p. 260–79.
  • SacksMS, David MerrymanW, SchmidtDE. 2009. On the biomechanics of heart valve function. J Biomech. 42(12):1804–1824.
  • SacksMS, SchoenFJ, MayerJE. 2009. Bioengineering challenges for heart valve tissue engineering. Annu Rev Biomed Eng. 11:289–313.
  • SacksMS, YoganathanAP. 2007. Heart valve function: a biomechanical perspective. Phil Trans R Soc Lond Biol Sci. 362(1484):1369–1391.
  • SalesVL, MettlerBA, EngelmayrGC, AikawaE, BischoffJ, MartinDP, ExarhopoulosA, MosesMA, SchoenFJ, SacksMS, MayerJE. 2010. Endothelial progenitor cells as a sole source for ex vivo seeding of tissue-engineered heart valves. Circulation. 16(1):257–267.
  • SchmidtD, AchermannJ, OdermattB, BreymannC, MolA, GenoniM, ZundG, HoerstrupSP. 2007. Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. Circulation. 116(11 Suppl):I64–I70.
  • SchmidtD, DijkmanPE, Driessen-MolA, StengerR, MarianiC, PuolakkaA, RissanenM, DeichmannT, OdermattB, WeberB et al., 2010. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J Am Coll Cardiol. 56(6):510–520.
  • SchmidtD, MolA, OdermattB, NeuenschwanderS, BreymannC, GössiM, GenoniM, ZundG, HoerstrupSP. 2006. Engineering of biologically active living heart valve leaflets using human umbilical cord-derived progenitor cells. Tissue Eng. 12(11):3223–3232.
  • SchoenFJ. 2008. Evolving concepts of cardiac valve dynamics the continuum of development, functional structure, pathobiology and tissue engineering. Circulation. 118(18):1864–1880.
  • SiepeM, AkhyariP, LichtenbergA, SchlensakC, BeyersdorfF. 2008. Stem cells used for cardiovascular tissue engineering. Eur J Cardiothoracic Surg. 34(2):242–247.
  • SodianR, HoerstrupSP, SperlingJS, DaebritzSH, MartinDP, SchoenFJ, VacantiJP, MayerJE. 2000. Tissue engineering of heart valves: in vitro experience. Ann Thorac Surg. 70:140–144.
  • SticklerP, De VisscherG, MesureL, FamaeyN, MartinD, CampbellJH, Van OosterwyckH, MeurisB, FlamengW. 2010. Cyclically stretching developing tissue in vivo enhances mechanical strength and organization of vascular grafts. Acta Biomater. 6(7):2448–2456.
  • StockUA, SakamotoT, HatsuokaS, MartinDP, NagashimaM, MoranAM, MosesMA, KhalilPN, SchoenFJ, VacantiJP, MayerJE. 2000. Patch augmentation of the pulmonary artery with bioabsorbable polymers and autologous cell seeding. J Thorac Cardiov Sur. 120(6):1158–1167.
  • SutherlandFW, PerryTE, YuY, SherwoodMC, RabkinE, MasudaY, GarciaAG, McLellanDL, EngelmayrGC, SacksMS, SchoenFJ, MayerJE. 2005. From stem cells to viable autologous semilunar heart valve. Circulation. 111(21):2783–2791.
  • YeattsAB, FisherJP. 2011. Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress. Bone. 48(2):171–181.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.